IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1961

Physical and mineralogical factors in stabilization of Iowa soils with lime and fly ash

Manuel Mateos Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Civil Engineering Commons

Recommended Citation

Mateos, Manuel, "Physical and mineralogical factors in stabilization of Iowa soils with lime and fly ash" (1961). Retrospective Theses and Dissertations. 2442.

https://lib.dr.iastate.edu/rtd/2442

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

This dissertation has been 61-3044 microfilmed exactly as received

MATEOS, Manuel, 1928—
PHYSICAL AND MINERALOGICAL FACTORS
IN STABILIZATION OF IOWA SOILS WITH
LIME AND FLY ASH.

Iowa State University of Science and Technology Ph.D., 1961 Engineering, civil

University Microfilms, Inc., Ann Arbor, Michigan

PHYSICAL AND MINERALOGICAL FACTORS IN STABILIZATION OF IOWA SOILS WITH LIME AND FLY ASH

рÀ

Menuel Mateos

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Soil Engineering

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean/of Graduste College

Iowa State University
Of Science and Technology
Ames, Iowa

1961

TABLE OF CONTENTS

<u> </u>	PAGE
INTRODUCTION	1
REVIEW OF LITERATURE Development of Soil-Lime-Fly Ash Stabilization Mechanism of Lime-Fly Ash Reaction	5 5 9
MATERIALS AND METHODS Materials Used Soils. Fly ashes Limes. Cement. Chemicals. Water Procedures. Mixture proportions Mixing and molding. Curing. Strength testing. Durability tests.	12 12 12 15 18 20 21 22 22 22 23 28 28
INVESTIGATION	30
Ships Dune sand (vambotil Friable loess Alluvial clay Discussion	30 31 40 41 42 42
Lime and Fly Ash Proportions and Content Friable loess	45 70 71 85 93
Lime, and Fly Ash Mixtures	95 95 103

	Page
Effect of Temperature on Strength of Soil, Lime,	1 086
and fly ash mixtures	106
Dune sand	109
Gumbotil	110
	111
Discussion	خليف
Effect of Temperature on Strength of Soil, Lime,	i.
and Fly Ash Mixtures	114
Calcitic lime	115
Dolomitic lime	116
Discussion	116
Steam Curing Soil Stabilized Mixtures	128
Discussion	129
Preliminary Survey of Chemical Additives to	
Mixtures of Lime and Fly Ash	134
Sodium carbonate	135
Sodium hydroxide	135
Sodium chloride and calcium chloride	142
Sodium metasilicate	142
Lithium carbonate, potassium permanganate,	476
manganese chloride, aluminum chloride and	
	143
sodium phosphate	_
Phosphoric acid	143
Magnesium oxide	143
Extended Evaluation of Chemical Additives	144
Dune sand	145
Friable loess	146
Alluvial clay and gumbotil	155
Sodium carbonate	155
Sodium hydroxide	156
Sodium chloride	157
Sodium metasilicate	157
Calcitic hydrated and dolomitic monohydrate	_
limes	158
Effects of Additives at Low Curing Temperatures	158
Calcitic lime	158
Dolomitic lime	159
Discussion	162
Mechanism of Chemical Additives in Lime and Fly	303
Ash Mixtures	163
	_
Bases and basic salts	164
Acid salts	166
Neutral salts	167
Acid	167
Miscellaneous chemical	168
Chemical additives in soil, lime, and fly ash	
mixtures	168

	Page
Modification of Fly Ashes	169
Fly ash No. 2	171
Fly ash No. 4	172
Discussion	172
Lime Stabilization	173
Presentation and discussion of results	173
Discussion	182
Discussion of Moisture-Density Curves of Clayey	
Soils Treated With Lime	183
Portland Cement Stabilization	190
Presentation and discussion of results	191
Durability Evaluation	198
Dune sand	199
Friable loess	205
Gumbotil	206
Alluvial clay	210
CONCLUSIONS	213
RECOMMENDATIONS FOR FURTHER STUDY	219
BIELIOGRAPHY	221
ACKNOWLEDGMENTS	228
ADDWENTY	220

INTRODUCTION

Natural outcrops of sound bedrock are not common in Iowa. Quarries are sometimes difficult to open because the rock is generally covered by a thick overburden. This initial cost to uncover the bedrock and the high expenses of exploitation accounts for the scarcity of open quarries in Iowa and for a high initial price of the rock products. When the quarries are distant from the construction site and the amount of aggregate required does not warrant the opening of a new one, the hauling expense may make the aggregate very expensive. This may inhibit its use, and engineers must seek for other more economic solutions or materials.

Soil, cheap and abundant, has been used for thousands of years as a construction material. In its natural state it generally has very poor engineering qualities, but they are improved by ramming. The introduction in the early thirties of the concepts of lubrication effects of water and of an optimum moisture that produces a maximum density for a compactive effort, gave the soil engineer new tools in the improvement of a soil for its use as an engineering material (59)*. This concept of the moisture-density

^{*} Numbers in parenthesis refer to the Bibliography.

relationship was applied to soils treated with admixtures, and from this a separate science of soil stabilization has developed.

Several soil admixtures are used today to obtain a construction material with better engineering properties than those of the original soil. The most extensively used are cement and lime. Others, like lime with fly ash, appear to be satisfactory stabilizers but they have not been much used because their characteristics and behavior when added to soils are not well known. Many other admixtures are being evaluated in the laboratory before subjecting them to field testing.

The importance of the construction program of the vast network of interstate highways has given the investigations for new and better methods of soil stabilization additional emphasis. These investigations may bring some economy to the expenditures for the program. The item in a recent report on highway research for which the highest amount of money was recommended was the improvement of knowledge of aggregates and soils; a total of ten million dollars annually was suggested (38).

During the last ten years the Engineering Experiment
Station of Iowa State University, in cooperation with the
Iowa State Highway Commission and the Iowa Highway Research
Board has been conducting an extensive evaluation of differ-

ent methods of soil stabilization for road courses. Special attention has been given to the use of cheap available chemical and by-products or wastes. One of them is fly ash, which together with lime can be used in soil stabilization.

Fly ash is an artificial pozzolan produced as a waste material in the power plants that burn powdered coal. The American Society for Testing Materials has defined fly ash and pozzolan as follows (4):

For the purpose of these specifications <u>fly ash</u> is defined as the finely divided residue that results from the combustion of ground or powdered coal and is transported from the boiler by flue gases.

For the purpose of these specifications the term pozzolan is defined as a silicious or alumino-silicious material which in itself possesses little or no cementitious value but which in finely divided form and in the presence of moisture will chemically react with alkali and alkaline earth hydroxides at ordinary temperatures to form or to assist in forming compounds possessing cementitious properties.

Industries have the problem of disposing of over ten million tons of fly ash every year; the cost to haul and dump fly ash is approximately one dollar a ton. Since laboratory and field tests of soil stabilized with lime and fly ash have given promising results, highway engineers and power industry management are interested in further improving and prometing the use of fly ash in soil stabilization.

The work done until now to evaluate lime plus fly ash as an admixture to soils has been very restrictive. General conclusions as to the use of these materials have been drawn

based on results obtained with a limited variety of the component materials—soil, lime and fly ash, or based on limited testing. The insufficient "know-how" of a method or process may lead to an erroneous evaluation of its qualities or properties. An attempt has been made in this investigation to introduce a reasonable number of variables in the main components: soil, lime and fly ash. Other factors had to be studied also: the investigation for this report was conducted to obtain information on the following aspects of soil-lime-fly ash stabilization:

- 1. Lime and fly ash proportions and amount
- 2. Moisture-density-strength relationships
- 3. Effect of compactive effort
- 4. Effect of curing temperature
- 5. Influence of temperatures of component materials at time of compaction
- 6. Effect of delay of compaction after wet mixing
- 7. Effect of chemical additions on the lime-fly ash reaction and their effects with soils
- 8. Study of the modification of fly ashes
- 9. Comparison with other methods of soil stabilization
- 10. Final evaluation including freezing and thawing tests.

REVIEW OF LITERATURE

As an artificial pozzolan, fly ash can be used in any of the numerous applications in which pozzolans are used. providing its quality competes with other available pozzolans (7,20,21,51,56). Mixtures of pozzolan, lime and water form a cement that was extensively used by the Romans. Philologically the name pozzolan comes from the city of Pozzuoli near Vesuvious and the bay of Naples, Italy, where the Romans quarried a volcanic ash. Roman structures built 2,000 years ago and still standing today attest the quality and durability of pozzolanic cements.

Development of Soil-Lime-Fly Ash Stabilization

With the expansion of the electric power industry in the United States during the early 1930's, power companies burning pulverized coal, and collecting fly ash from the smoke to prevent air pollution, found the disposal problem to be an expensive and sometimes a difficult one. Great quantities of fly ash had to be hauled away and dumped, then buried or otherwise prevented from blowing around (62,70). Much research has been done to find new uses for fly ash, but much more of the ash is still produced than can be used. The principal uses have been as a filler in grouting materials, as an ingredient in the manufacture of building blocks and in Prepakt concrete, as a pozzolan

in Fortland cement concrete, and as an admixture with lime in soil stabilization. (9,11,47,51,66)

In 1934 a patent was granted on the use of fly ash with an alkaline earth base as a structural material (58). The sementitious properties of fly ash mixed with lime and water were studied in 1940; after that several compositions of soil, lime, and fly ash for use in base and subbase courses of pavements were studied, and the trade name Poz-O-Pac was given to them (13,24). A patent on the use of lime and fly ash with fine aggregate was obtained in 1951, and another in 1954 on the use of lime and fly ash for stabilizing finely divided materials such as soils (34,35). Another patent was issued in 1957 (36).

The first field trials of soil, lime and fly ash mixtures were made in the construction of a number of by-passes, interchanges and shoulders of the New Jersey Turn-pike. It has been reported that they are giving satisfactory performance (52,53,54).

Since 1954 the Iowa Engineering Experiment Station has been studying the effect of both the amount of lime and fly ash and the ratio of lime to fly ash on the strength and durability of soil, lime and ash mixtures. This work has indicated that about 25 percent lime and fly ash in ratios varying between one lime to nine fly ash and one lime to two fly ash can be used satisfactorily for stabilizing various

textured soils (14.22.28.55.64). It appears that the higher ratics are required for clayey soils (19.39). Dolomitic monohydrate lime produces higher strength than high-calcium hydrated lime in soil and lime mixtures with Iowa soils (44,48). The same was found to be true for soil, lime and fly ash mixtures at elevated temperatures greatly improves the early strength (14,28,63). The highest compressive strength occurs at or just below the optimum moisture content for the standard Proctor compactive effort (28). High carbon fly ashes do not react with lime as well as the low carbon fly ashes; fineness is also a measure of the reactivity (19,63,67). The strength increases with the increase of fly ash content (14,49). The addition of fly ash may not be necessary to lime stabilized soils containing large amounts of montmorillonite or kaclinite clays (39) or silt (64). The strength increases proportionately with the amount of compactive effort (40,68). Increasing the time of mixing in a mechanical mixer, at constant speed, gives increased unconfined compressive strength (28). Test specimens were still gaining strength after a curing period of one year (28). The relative humidity during ouring should be maintained as near 100 percent as possible (28).

The addition of calcium chloride to soil-lime-fly ash mixtures has been known to increase its early strength (28,53,54). In field trials of soil-lime-fly ash paving

near Detroit. Michigan, the best field performance was obtained with a stony sand which had been treated with about 0.5 percent of calcium chloride six weeks prior to lime-fly ash stabilization (17). The higher early strength obtained in this road, and thus greater resistance to freezing, was attributed to an acceleration of the lime-fly ash reaction by the calcium chloride.

The strength improvements when calcium chloride was added in small amounts to soil, lime and fly ash mixtures suggested that other chemicals may produce similar strength increases. An investigation was made with 47 chemicals and it was found that many of them improved considerably the early and/or long term strength of lime-fly ash mixtures. Among the more promising are sodium carbonate, sodium and potasslum hydroxides, lithium carbonate, potassium and sodium permanganates, potassium earbenate, sodium chloride, aluminum chloride, potassium and sodium bicarbonates, sodium sulfite and a sodium tetraphosphate (18,50).

An evaluation of the most promising chemical additive, sodium carbonate, was then made (22,33,49,55). As a result a patent was obtained on the use of sodium carbonate to accelerate the setting of lime-fly sch-soil mixtures (32).

The serviceability of soil, lime, and fly ash mixtures with and without chemicals is being studied in field trials by the Iowa Engineering Experiment Station in co-operation

With the Iowa State Highway Commission and the Iowa Highway Research Board. A test road was built near Colfax in 1958, and another was built near Fort Dodge in 1960. Both test roads have sections of base and/or subbase courses of soil treated with lime and fly ash. A report is being prepared on the Colfax test road (41).

Mechanism of Lime-Fly Ash Reaction

When lime and fly ash are mixed with the soil, part of the lime combines with the soil particles, part with carbon dioxide present in the soil air and soil water, and part with fly ash in a pozzolanic reaction.

Lime reacts with the clay minerals in the soil in two manners, one of which is ionic in nature. This is a complex reaction in which the excess of calcium cations supplied by the lime cause, by their crowding action on clay particles, a flocculation of the soil, and also an exchange of calcium for other cations in the clay structure. By this reaction soil plasticity is decreased, workability is greatly increased, and volume changes due to moisture are reduced. The other reaction, that takes place when the soil is in a compacted state, is pozzolanic in nature similar to the limefly ash reaction. Fine silt-size quarts minerals, in addition to clay minerals, are very likely involved in that reaction. Gementitious reaction products are formed which

increase the bearing capacity of the soil.

Carbon dioxide combines with lime to form calcium carbonate or calcium magnesium carbonate, depending on the lime used. In practice this takes place at a very slow rate in soil-lime-fly ash mixtures. It has been found that the presence of carbon dioxide in the air does not affect the compressive strength of the soil-lime-fly ash specimens (14).

The main cementitious material created by the pozzolanic reaction is a hydrous calcium silicate, but since most pozzolans contain amounts of materials other than silica, other compounds involving iron, alumina and the alkalies are likely formed also (10,20,21). Calcium silicates and aluminates have been identified in the reaction between lime and fly ash (8,46). A compound has been isolated in the reaction between a lime and a fly ash which is tentatively formulated as $[(Ga_{89} Na_{11}) \ 0][(Si_{75} Al_{25}) \ 0_2] \ .9 \ H_20^{\circ}$. Base exchange takes place between the pozzolan and lime, but this action is unlikely to be cementitious (45).

Pozzolans containing silica in amorphous forms react faster with lime than those containing silica in crystalline forms, and the rate of reaction varies inversely with crystal size (20). Strength increases with compacted density of soil-

Handy, R.L., Engineering Experiment Station, Ames, Iowa. Data on x-ray analysis of line and fly ash mixtures.

lime-fly ash mixtures (40,68). This may be due to an increase in the number of contact points among the soil particles providing greater bond by the cementitious microcrystals or gels.

The reactivity of pozzolans is correlated with the alkaline nature of lime-pozzolan mixtures. The activation of silica by the hydroxyl ions plays an important part in the formation of calcium silicates. The maximum adsorption of calcium ions by quartz occurs at a pH of 11 (42). A study of the adsorption of calcium by a clay showed that the amount of calcium adsorbed increases with increase of pH up to about pH 11 (12). Therefore there seems to be an optimum pH for the formation of calcium silicates in the lime-pozzolan reaction.

MATERIALS AND METHODS

Materials Used

Soils

Four natural soils, a dune sand, a friable loess, an alluvial clay and a heavily weathered glacial till, were selected as being representative of important Iowa soil types. A field description of each sample is given in Table 1, and physical and chemical properties are given in Table 2.

Ottawa sand was used in the preliminary evaluation of the effects of chemical additives on the lime and fly ash reaction. It is a natural silica sand assumed to be unreactive with lime and water at the curing temperatures used. Its gradation met the requirements for graded standard sand (ASTM Designation: C 109-58) (4):

	81	eve size	Percent passing
No. No. No.	16 30 50 100	(1190-micron) (590-micron) (297-micron) (149-micron)	100 98 ± 2 28 ± 5 2 ± 2

۴

Table 1. Description of natural soils

So.1.3.	Dune sand (S-6-2)	Friable losse (20-2)	Alluvial clay (627-1)	Kansan gumbot11 (528-8)
Location	Benton County, Iowa	Harrison County, Iowa	Harrison County,	Reckuk County,
Geological description	Wisconsin-age eclian sand, fine-grained, oxidized, leached	Wisconsin-age losss, friable, oxidized, calcareous	Recent fill, alluvial plastic, slightly cal-careous	Kansan-age gun- botil, highly weathered, plastic, non- calcareous
Soil series	Carrington	Hamburg	None	Mahaska ^b
Horizon	O	Ø	Undefined	Foseil B
Sampling depth,ft.	6-11	49-50	0-4	7.5-8.5

A Numbers in parentheses are those assigned by the Soil Research Laboratory of the Iowa Engineering Experiment Station.

b Underlies C horizon losss of Mahaska series.

Table 2. Properties of natural soils

Soil	Dune sand	Friable locas	Alluvial clay	Kansan gumboti::L
Textural compositiona, %:	A CONTRACTOR CONTRACTO	affine tils velver af efficeredisallemistis in velkerlig _{ers} entskatgere genere	g telligini Marandaya yapata Pilitadir gari Pila aray and As wegin stades	enteret että vattiteitiavanjä mittä jälleineis esa. Että ter
Gravel (> 2min)	0.0	0.0	0.0	0.0
Sand (2-0.074 mm)	95.5	0.7	2.4	19.4
S116 (0.074-0.005 mm)	9 5. 5 1.5	82 . 3	25.6	14.6
Clay (< 0.005 mm)	3.0 2.6	17.0	72.0	66.0
Colloids (< Q.002 mm)	2.6	14.0	61.0	63.0
Atterberg limits ^b :				~ J ~ ~
Liquid limit, %		32	72	76
Plastic limit, %		32 25	26	76 26
Plasticity index	Non-Plastic	7	72 26 46	50
Classification:		•	. •	J •
Texturalo	Sand	Silty loam	Clav	Clay
Engineering (AASHO) d	A-3(0)	A-4(8)	Clay A-7-6(20)	A=7-6(20)
Theminal:	- , ,	25 1(0)	20 1 001001	36 - [(W())
Cat. exch. cap.e, m.e./100g	1.0	14.5	44.4	39.2
νH ¹	6.6	14.5 8.4		7.4
Carbonatess, %	0.4	10.4	7·7 3·6 1·6	2.0
Organic matterh, %	0.1	0.1	1.6	ő.1
	Montmorillonite	Montmorillonite	Montmor11.1c	onite Montro-
	(trace)			rillon«
				1te

a ASTM Method D422-54T (3).
b ASTM Method D423-54T and D424-54T (3).
c Triangular chart developed by U.S. Bureau of Public Roads (65, p.47).
d AASHO Method M145-49 (2).

Ammonium acetate (pH 2 7) method on soil fraction 0.42 mm (No. 40 sleve).

1 Glass electrode method using suspension of 15 g soil in 30 cc distilled waters g Versenate method for total calcium.

h Potassium biohromate method.

¹ X-ray diffraction analysis.

Fly Ashes

Eight fly ashes were selected to represent variations in the properties of this by-product material.

Fly ash No. 1 was collected by multiple cyclone and electrical precipitators. The coal was from districts 3 and 8 in Ohio and from northern West Virginia, and was processed through pulverizing mills so that 70 percent passed a #200 mesh. The sample was sent from the St. Clair (Michigan) Power Plant of the Detroit Edison Company.

Fly ash No. 2 was collected by mechanical equipment. The coal was from northern Illinois, and was burned in a B & W boiler. This sample was sent from the Sixth Street Power Station in Cedar Rapids, Iowa, by the Iowa Electric Light and Power Company.

Fly ash No. 3 was collected by electrical precipitators from a dry bottom type of boiler using unwashed coal from western Kentucky. The sample was sent from the Paddy's Run Power Station at Louisville, Kentucky, by the Louisville Gas and Electric Company.

Fly ash No. 4 was collected by mechanical precipitators. The soal from northern Illinois was burned in a Springfield boiler. This sample was sent from the Sixth Street Station in Cedar Rapids, Iowa, by the Iowa Electric Light and Power Company.

Flv ash No. 5 was collected by mechanical (centrifugal) precipitators. The coal from Illinois was pulverized in a ball mill prior to burning. The sample was sent from Riverside Station Pewer Plant at Davenport, Iowa, by the Iowa-Illinois Gas and Electric Company.

Fly ash No. 6 was collected by mechanical precipitators (multicone dust collector). The coal from Icwa (Monroe, Polk, Marion and Mahaska counties) was unwashed steam coal which was pulverized and tangencial fired. The sample was sent from the Des Moines Power Plant by the Iowa Power and Light Company.

Fly ash No. 7 was collected by mechanical equipment (VGR multiclone). The coal from southern Illinois was washed, dried, and pulverized with Riley mills. The sample was sent from the Waterloo Power Plant by the Iowa Public Service Company.

Fly ash No. 8 was collected by mechanical precipitators (cyclone type). The scal from several Missouri and Kansas mines was pulverized and burned in suspension in Combustion Engineering boilers. The sample was sent from the Hawthorn Station Power Plant of the Kansas City Power and Light Company, Missouri.

7.7

Table 3. Analysis of fly ashes

displaces represent at refer springer operation paration state of the State State State of the Associate Associate State		and the state of t	eringenese e signes die geschill Mandis Principal angeweisen geschill feit der T	B. Spierstern Spiers in Mark Market Spiers (Spierstern Spiers (Spiers Spiers Spiers (Spiers Spiers Spiers Spiers Spiers Spiers Spiers (Spiers Spiers
Fly ash No.	1	2	3	<i>L</i> ş
Source	St. Clair Michigan	C. Rapide Iowa	Kouisville Kentuoky	C. Rapids Iowa
Loss on ignition, %a Specific surface, Blaine (sq.cm/3)	3.9	7.2 2663	2.6 3226	18.6 4550
Specific gravity	2,58	2.39	2.60	2.37
Fineness (% passing No. 325 sieve)	91.8	49.8	86.1	54.9
Silicon dioxide (BiO2), % Magneshum oxide (MgO), %	43.5	36.7	42.5	36.2
Magnesium oxide (MgO), %	0.2	1.0	0.8	0.9 8.3
dalcium oxide (QaO), %	2.9	3.5	5•7 23•4	8.3
Aluminum oxide (Al203), %	23.2 24.8	21.3		15.8
Iron oxide (Fe2O3), %		24.3	20.0	16.7
Sulphur trioxide (803), %	0.8	2.0	2.3	1.5

aApproximately equal to carbon content.

Table 3. (Continued)

Fly ash No.	5	6	7'	8
Bouroe	Dave npert	Des Moines	Waterloo	Kans as
	Iowa	Iowa	Iowa	Missouri
Loss on ignition, %a	0.7	0.2	13.9	3.8
Specific surface, Blaine (sq.cm/3)	576	1460	42 <u>4</u> 00	2048
Specific gravity	3.43	2.82	2.34	2.68
Fineness (% passing No. 325 sieve)	22.6	31.8	54.9	64.8
Silicon dioxide (5102), % Magnesium oxide (MgO), % Calcium oxide (CaO), % Aluminum oxide (Al203), % Iron oxide (Fe203), % Sulphum trioxide (503), %	11.3 0.3 12.3 0.9 68.4 3.2	40.1 0.3 5.8 13.1 36.7 2.4	38.5 0.2 3.2 18.1 16.2 1.1	35.3 0.9 5.3 7.7 43.3

Lîmes

Most of this investigation was made using two commercial grade limes furnished by the U.S. Gypsum Company. One is a hydrated calcitic lime, brand name Kemikal, and the other is a type N monohydrate dolomitic lime, brand name Kemidol. In the preliminary evaluation of chemical additives to Ottawa sand-lime-fly ash mixtures a calcium hydroxide (calcitic hydrated) lime, reagent grade, from Fisher Scientific Company was used. Two dolomitic monohydrate limes, from Western Lime and Gement Company and from Rockwell Lime Company, were also used in a comparative study of some commercial dolomitic monohydrate limes. The properties of all the limes used are given in Table 4.

Table 4. Analysis of limes

Kind of lime		aloitic drated	Dolomitic monohydrate		Dolomitic monohydrat	Dolomitic monohydrati
Type	- 	Commercial	Commercial type N	Reagent grade	Commercial type N	Commercial type N
Source	WeW	Braunfels, Texas	Genoa, Ohio			
Company	U.	.S. Gypsum	U.S. Gypsun	Fisher	Western	Rockwell
Brand name		Kem1kal	Kem1dol			
Silicon dioxide, %		0.3	0.4		0.6	0.4
Iron and aluminum oxide	, %	0.6	0.2		1.1	0.6
Calcium oxide, %		73.8	49.6		48.3	45.4
Magnesium oxide, %		0.6	31.8		33.2	36.3
Bulfur trioxide, %		0.3	1.1			
Loss on ignition, %		24.1	17.0		16.8	21.0
Passing No. 325 sleve,	25	95•5	91.0		99.2	91.0

Cement

The portland cement used was commercial type I from the Penn-Dixie Cement Corporation of Des Moines, Iowa.

Table 5. Analysis of portland cement.

Source	Des Moines	
Company	Penn-Dixie	
Silicon dioxide, %	21.6	
Aluminum oxide, %	5.1	
Iron oxide, %	3.0	
Calcium exide, %	64.1	
Magnesium oxide, %	2.9	
Sulfur trioxide, %	2•3	
Loss on ignition, %	0.6	

Chemicals

The following chemicals evaluated as additives to limefly ash mixtures were reagent grade, except magnesium oxide which was USP grade:

Chemical	Formula		
Sodium carbonate	Na ₂ CO ₃		
Sodium hydroxide	NaOH		
Sodium metasilicate	Na2SiO3 . 9H2O		
Sodium chloride	Naci		
Aluminum chloride	A1013 . 6H20		
Calcium chloride	CeClo		
Lithium carbonate	LioCÕa		
Magnesium oxide	Li ₂ GÖ ₃ MgO		
Manganese chloride	MnCl ₂ . 4H ₂ O		
Phosphoric acid	85% Ħ2POh		
Potassium permanganate	MnCl ₂ . 4H ₂ O 85% Н ₃ РО ₄ КИпО ₄		
Sodium phosphate	Na3PO4 . 12H2O		

Mater

Distilled water was used throughout all the experimentation to eliminate the variable that might result from impurities added with ordinary tap water. It was obtained from a Barnstead Automatic Water Still, model SLH-2.

Procedures

Mixture proportions

The proportions of soil plus lime or lime-fly ash or cement were made based on the dry weight of the soil-lime, soil-lime-fly ash or soil-cement mixtures. The chemical additive, when used, was computed on a dry basis excluding the water of crystalization, and is expressed as a percentage of the dry weight of the total Ottawa sand or soil, lime, and fly ash mixture. Chemicals were added either in powder form or as a component of the mix water.

Mixing and molding

Mixing of batches for preparing test specimens was done in a Hobart kitchen mixer, model C-100, at low speed in the following sequence of operation: The dry ingredients were machine mixed for 30 seconds, the mix water was added and machine mixed for one minute, the mixture was hand mixed for about 30 seconds to clean the sides and bottom of the mixing bowl, and the mixture was machine mixed for one minute.

Molding of test specimens was started immediately after a batch was mixed, except where otherwise indicated. A double plunger drop-hammer apparatus was used to mold 2 inch diameter by 2 ± 0.05 inch high specimens, Figure 1. With this apparatus the equivalent of standard Proctor compactive energy was obtained when giving 5 blows on each side of the

specimen using a 5 pound hammer dropping 12 inches with the molding apparatus fastened to a wooden table. The equivalent of modified Proctor compactive energy was obtained with a 10 blows on each side with a 10 pound hammer dropping 12 inches with the molding apparatus fastened to a concrete pedestal (3,28,68). The standard Proctor compaction was used in these studies except where otherwise specified.

After molding, the specimen was extruded, weighed to the nearest 0.1 gram and measured to the nearest 0.001 inch.

During molding, a wet cloth was kept over the bowl to prevent drying of the mixture.

Curing

Specimens of each batch were moist cured at $70 \pm 4^{\circ}$ F, except where otherwise indicated, at a relative humidity of over 90 percent for the desired periods of time. To preserve moisture better and to reduce absorption of carbon dioxide from the air, the specimens were wrapped in wax paper and were sealed with cellophane tape before being placed in the humid room.

Specimens cured at higher temperatures were wrapped in Saran wrap and kept in watertight containers with free water inside to assure a high relative humidity during the curing period. Steam cured specimens were wrapped in Saran wrap and put in an autoclave at 15 atmospheres of pressure and

Figure 1(a). Apparatus for molding 2 inch diameter by 2 inch high test specimens to near standard Proctor compaction.

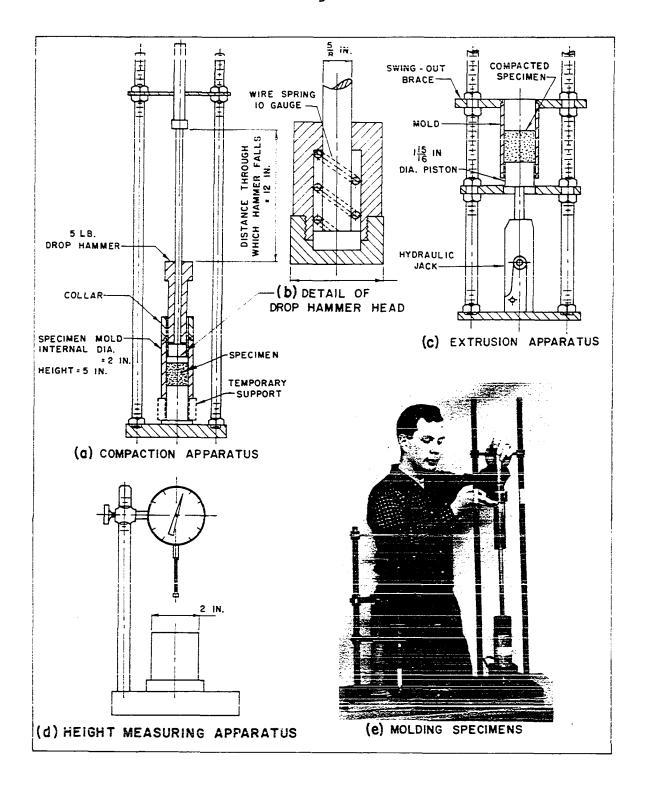
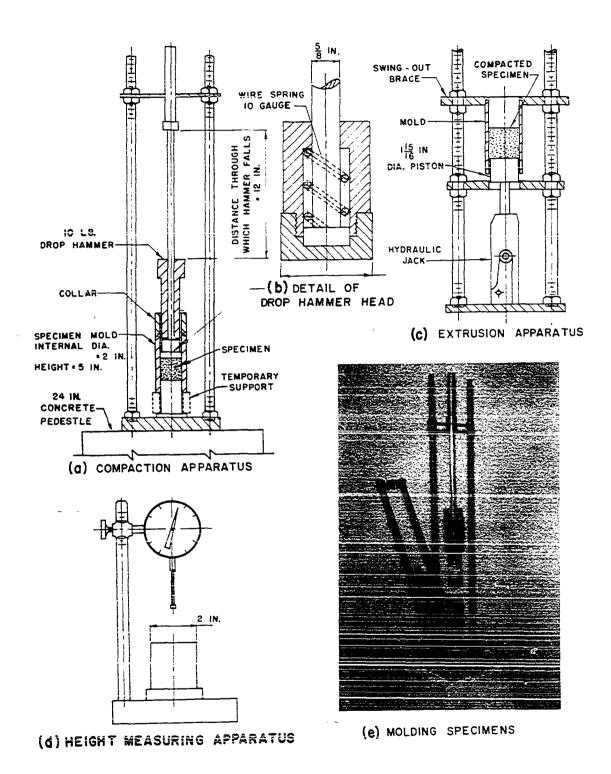



Figure 1(b). Apparatus for molding 2 inch diameter by 2 inch high test specimens to near modified Proctor compaction.

248°F (120°C); the temperature was increased slowly up to the 248°F in order to prevent cracking of the specimens. Specimens cured at low temperatures were kept in a refrigerator after being wrapped in Saran wrap. The lost of moisture in no specimen was greater than 5 percent of the total moisture content.

Strength testing

After each curing period, specimens were unwrapped and immersed in distilled water for one day. Then they were tested for unconfined compressive strength using a load travel rate of 0.1 inch per minute. Tests were run in triplicate, and the average strengths are reported in psi. This is in accordance with ASTM specification designation C-109-58 which requires a minimum of three specimens for each set of curing conditions (4). A series of three observations is generally sufficient to detect any readings which deviate excessively. Specimens that differed by more than 10 percent from the average value of test specimens made from the same mix and tested at the same age were not considered in determining compressive strength. If two specimens were rejected, new specimens were prepared.

Durability tests

The Iowa freeze-thaw test (26) was used to evaluate the durability of selected mixtures. Four 2 inch by 2 inch

specimens from each mixture were cured 28 days in the moisture room. Two specimens, designated the control specimens, were then left immersed for 10 days; and the other two specimens, designated the freeze and thaw specimens, were exposed alternately to temperatures of 20 + 20F (16 hours) and 77 + 4°F (8 hours) for ten cycles, each cycle lasting 24 hours. A vacum flask specimen container (16) was used to cause freezing to occur from the top down and to supply unfrozen water, kept at 35 ± 2°F by a light bulb, to the bottom of the specimen throughout the test. After these treatments, the unconfined compressive strength of the freeze-thaw specimens (pf) and of the control specimens (pc) were determined. These values were used to evaluate the durability of the stabilized soils. The index of resistance to the effect of freezing (Rf) was calculated from the formula:

$$R_{f} = \frac{100 \text{ pr}}{P_{e}} (\%)$$

THUTTHALLATING

Moisture-Density and Moisture-Strength Relationships

The most commonly accepted practice in soil stabilization is to perform the compaction at a moisture content as near to the optimum for maximum dry density as possible. Previous tests made at the Engineering Experiment Station of Iowa State University with soil, lime, and fly ash mixtures revealed some differences between the optimum moisture for maximum dry density and that for maximum 7 day strength of a silty soil (28).

The information on the effects of molding moisture on the strength of lime-fly ash stabilized soils is then scarce and sometimes contradictory. This led to an investigation to find if there is any correlation between the moisture for maximum dry density and the moisture for maximum strength. The strength tests had to be made including short and long term curing periods; consequently specimens molded at different moisture contents were kept curing for 7, 28 and 90 days.

Two compactive efforts were used, one approximating the standard Proctor* and the other approximating the modified Proctor*. The soils used were the dune sand, friable loss,

^{*} A.S.T.M. Designation D698-57T (3).

^{**} A.S.T.M. Procedure (3).

hydrated; and the fly ashes were No. 3 with all the soils and Nos. 1 and 2 with dune sand and gumbotil. The proportions were 76.5 percent soil, 6 percent lime and 17.5 percent fly ash. The results are plotted in Figures 2 through 9.

Dune sand

The moisture for maximum dry density and the moisture for maximum? or 28 day strengths in any of the six sets of mixtures show no correlation (Table 6). The moistures for maximum strength are far to the dry side of the optimum moisture for maximum density. Both moistures of the specimens cured 90 days are closer, but there is still a difference of about 2.0 percent for the mixtures compacted at the standard Proctor and 1.0 percent or less for the modified Proctor; the moisture for maximum strength is still on the dry side of the optimum moisture for maximum density. The strength curves for 7 and 28 days curing are rather flat, but for 90 days there is a very sharp peak for the maximum strength.

Figure 2. Moisture-density and moisturestrength relationships of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash No. 1 for standard and modified Proctor compactive efforts.

Figure 3. Moisture-density and moistures strength relationships of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated line, and fly ash No. 2 for standard and modified Proctor compactive efforts.

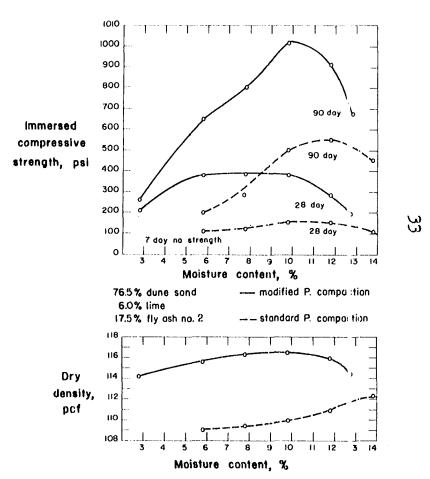
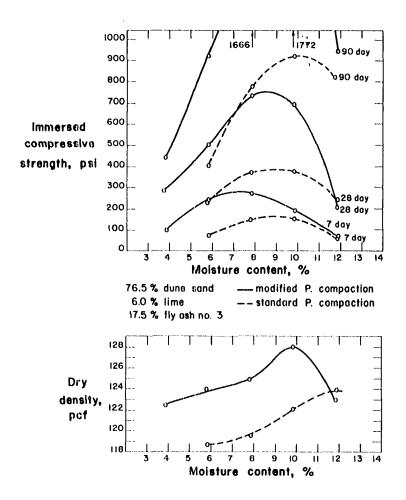



Figure 4. Moisture-density and moisturestrength relationships of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, illy ash No. 3 for standard and modified Proctor compactive efforts.

Figure 5. Moisture-density and moisture-strength relationships
of a 76.5:6:17.5 mixture of
gumbotil, calcitic hydrated
lime, and fly ash No. 1 for
standard and modified
Proctor compactive efforts.

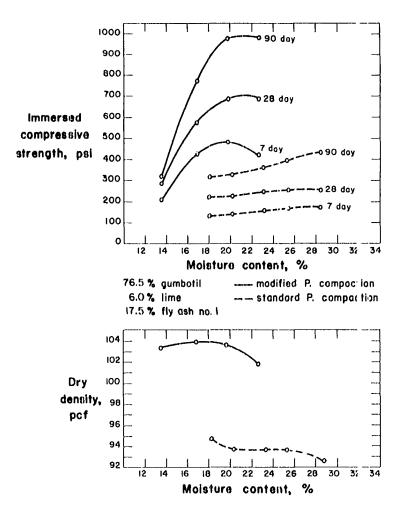
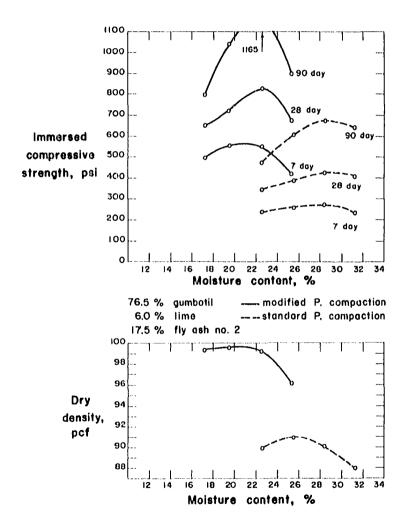



Figure 6. Moisture-density and moisturestrength relationships of a 76.5:6:17.5 mixture of gumbotil, calcitic hydrated lime, and fly ash No. 2 for standard and modified Proctor compactive efforts.

Figure 7. Moleture-density and moleture-strength relation-ships of a 76.5:5:17.5 mixture of gumbetil, esl-citic hydrated lime, and fly ash No. 3 for standard and modified Proctor compactive efforts.

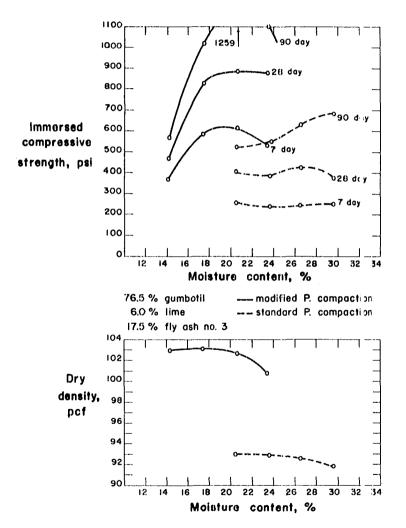
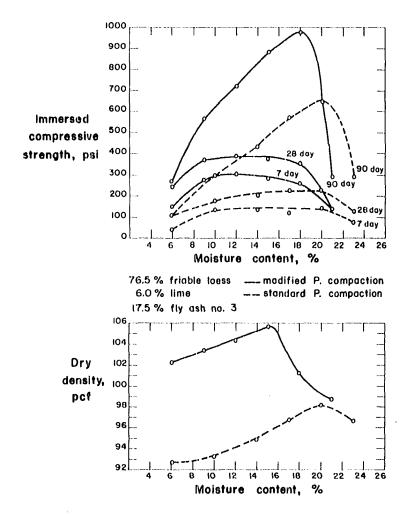



Figure 8. Moisture—density and moisture—
strength relationships of a 76.5:
6:17.5 mixture of friable loss,
calcitic hydrated lime, and fly
ash No. 3 for standard and
modified Proctor compactive efforts.

Figure 9. Moisture-density and moisture-strength relation-ships of a 76.5:6:17.5 mixture of alluvial clay, calcitic hydrated lime, and fly ash No. 3 for standard and modified Proctor compactive efforts.

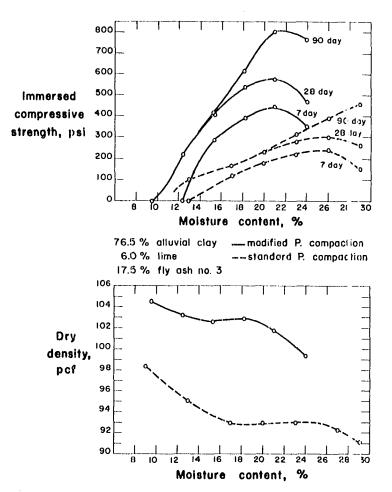


Table 6. Moisture contents for maximum dry density and
maximum strengths of dune sand, calcitic hydrated
lime and fly ash mixtures for standard and modified
Proctor compactive efforts

	Moisture contents					
	For max. For 1		aximum strength, %			
	densit	y, % 7 day	28 дау	90 day		
Fly ash No. 1 Standard Modified	11.5 8.0	4.0 4.0	5.5 4.0	9.0 7.0		
Fly ash No. 2 Standard Modified	13.8 10.0	No strength No strength	11.0	11.0		
Fly ash No. 3 Standard Modified	12.0 10.0	9•0 7•5	9 .0 8 .5	10.0 9.5		

Gumbotil

The data on optimum moistures are given in Table 7. Contrary to what occurs with the sand the moisture contents for maximum strength for this soil are to the wet side of the moisture for maximum density. Some of the density and strength curves are rather flat, making it difficult to define the maxima.

Table 7. Moisture contents for maximum dry density and maximum strengths of gumbotil, calcitic hydrated lime, and fly ash mixtures for standard and modified Proctor compactive efforts

	Moisture contents				
	For max.	For maximum strength, %			
	density, 5	7 ûsy	28 đa y	90 day	
Fly ash No. 1 Standard Modified	undefined 17.5	undefined	undefined 21.0		
Fly ash No. 2 Standard Modified	24.0- 19.0-	undefined 19.5			
Fly ash No. 3 Standard Modified	25.0 21.0	28.5 21.0	28.5 22.5	28.5 22.5	

Friable loess

The data on optimum moistures are presented in Table 8. The moistures for maximum dry density and maximum strength for standard Proctor compaction practically coincide. That is not so for modified Proctor compaction, in which ? and 28 day curing strength curves, although rather flat, show a maximum strength at moisture contents less than the optimum for maximum density, and a maximum is well defined at a moisture content greater than the optimum for maximum density for 90 day curing.

maximum strengths of friable losss, calcitic hydrated lime, and fly ash mixtures for standard and modified Proctor compactive efforts

	Moisture contents				
	For max.	For maximum strength, %			
	density, Ź	7 day	28 đay	90 day	
Fly ash No. 3 Standard Modified	20.0 15.3	20.0 12.0	20.0 12.0	20.4 18.0	

Alluvial clay

The shape of the moisture-density curves for this soil is very peculiar (Figure 9). The curves do not show a peak for maximum dry density and the density increases as the moisture content decreases. The strength curves show, however, a definite optimum moisture that changes conspicuously with curing time for standard compaction and slightly for modified.

Discussion

The results obtained here are significant in that they present new facts on the relations between maximum density and maximum strength in soil stabilization. The common

optimum moisture for maximum density. It has been assumed that a maximum density should give a greater strength through a more dense packing of the soil and stabilizer particles, thus putting in contact more surface area for the development of the chemical reactions that lead to the formation of cementitious compounds. But in processes developing cementitious compounds by hydration, as the limefly ash reaction is considered, the role of the water is of paramount importance.

Analyzing the results it is observed that, in general:

- a) The optimum moisture for maximum strength increased with the increase in curing time;
- b) The optimum moisture for maximum strength was to the dry side of the optimum moisture for maximum dry density with the dune sand soil. With both clayer soils, gumbotil and alluvial clay, it was on the wet side. With the friable loess the two optimums are rather coincident.

The results indicate that a supply of water is needed for the hydration processes to continue. With dune sand an amount of water two percentages below the optimum moisture for maximum density will develop a maximum, or close to the maximum, strength over a long curing period.

Reasonably good strengths were obtained at the optimum moisture content for maximum density but an excess of water brought about a sharp decrease in strength and amounts of water below the optimum reduced the strength. The optimum moisture for maximum density represents an amount of water sufficient for the chemical hydration, therefore that should be the recommended moisture to stabilize the friable loess, favoring moisture contents in the dry side of the optimum rather than in the wet side.

As indicated, the clayer soils showed great avidity for water. This is because complex reactions take place between the lime and soil particles apart of the lime-fly ash reaction. A rearrangement of the structure of the clay or colloidal particles may take place due to the excess of Ga ions in the stabilized soil. These Ga cations use up H and O ions and/or H₂O molecules. Based on long term strengths, it seems advisable to use amounts of water much greater than the optimum for maximum density with clayer soils containing high percentages of montmorillonitic clay. It is also observed that the shape of the moisture-density curves for both clayer soils are rather flat. In some instances the maximum density is not sharply shown, being undefined. This peculiarity will be discussed later in the section "Lime Stabilization".

Lime and Fly Ach Proportions and Content

One of the first questions to answer in soil-lime-fly ash stabilization is the amount of lime and fly ash to incorporate into the soil. The optimum amount and proportions of the lime and fly ash admixture are governed by the desired strength in the stabilized soils and by economy.

An unconfined compressive strength after 28 days curing of at least 300 psi after 24 hour immersion may be indicative of adequate stability for a base course mixture to withstand the imposed loads and the detrimental effects of freezing and thawing (6,37).

Lime-fly ash stabilization has to compete economically with other admixtures that might impart to the soil the same strengths at a cheaper cost. The price of lime ranges between 15 and 25 dollars a ton, including transportation to the job site. Fly ash sells for about one dollar a ton at the power plants. Even after transportation expenses the price of fly ash is several times cheaper than that of lime. Economic reasons favor consequently the use of greater amounts of fly ash than lime.

A great amount of work has been done to find the best proportions and amount of lime and fly ash, but this work has never been so comprehensive as to include enough kinds of fly ashes. In this work, eight fly ashes were evaluated

with the dume sand and three fly ashes with the other three soils. The fly ashes are produced in Iowa or within a radius which make them economical for use in Iowa.

The reason for using eight fly ashes with the sand is that sandy and granular soils respond better to lime-fly ash stabilization than silty or clayey soils. These eight fly ashes represent a wide range in characteristics, sources, and pozzolanic activity, and the results obtained with them may indicate the best proportions and amount to be used.

The number of fly ashes to use with the loess and clayey soils was narrowed to three. These three represent such a variety in properties and composition that the effectiveness of fly ash addition to silty and clayey soils stabilized with lime and their optimum lime and fly ash proportions and amount may be determined.

Two types of commercial limes from U. S. Gypsum Company, a calcitic hydrated (Kemikal) and a dolomitic monohydrate (Kemidol), were used with all the fly ashes and soils. Two more dolomitic monohydrate limes, from Rickwell Lime Company, and from Western Lime and Gement Company, were used with fly ash No. 3 and dune sand to check on the effectiveness of available commercial dolomitic monohydrate limes.

The amounts of lime used were 3, 6 and 9 percent with all soils; with gumbotil 12 percent lime was also tried.

For each of the above amounts of lime four mixes were pre-

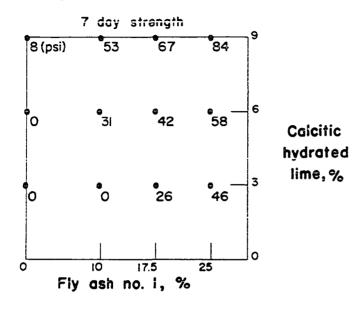
percent fly ash. All the percentages were based on the dry weight of the total soil, lime, and fly ash mixture. The above combinations of lime and fly ash gave sufficient data to plot strength contours, which was done for the 28 day strength results. After 7 days curing the strength developed was rather low. Contour graphs made for 7 day strength did not show very much and are not presented here.

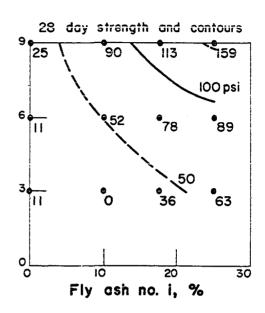
In preliminary work, not included here, moisture-density and moisture-strength relationships were determined to select the molding moisture content for every combination of soil, lime, and fly ash. At least four sets of tests were run for every combination of soil and fly ash. Maximum strengths for calcitic hydrated lime and the same amount of dolomitic monohydrate lime were obtained for practically the same optimum amount of water. The molding moisture content needed for maximum 28 day strengths was chosen.

Specimens were molded and kept curing for 7 and 28 days. This was deemed sufficient to draw conclusions as to the best amount and proportions of lime and fly ash. The specimens were also immersed in distilled water for 24 hours before testing for unconfined compressive strength. The results are given in Figures 10 through 27. Molding dry densities are given in Appendix 1.

Dune sand

Strength contours. The plotted strength contours (Figures 10 to 18) indicate there is no optimum amount and ratio of lime and fly ash that might be used with any kind of lime and fly ash to stabilize dune sand. There is a great similarity among the contours obtained with the same fly ash but with different limes. In general the proportions and amount of lime and fly ash needed to stabilize dune sand vary according to the kind of fly ash used.


The inclination of the strength contours, approaching a vertical position, except with fly ash No. 10, indicates that with dune sand lower amounts of lime than fly ash should be favored. The recommended amounts are between 3 and 6 percent lime and between 15 and 25, or perhaps 30, percent fly ash. The best amount within these limits differs with the kind of fly ash.


Density. The density varied with the kind and amounts of lime an fly ash. There is no consistency on which lime, calcitic hydrated or dolomitic monohydrate, may give higher densities; it depends, apparently, on the kind of fly ash and the admixture proportions.

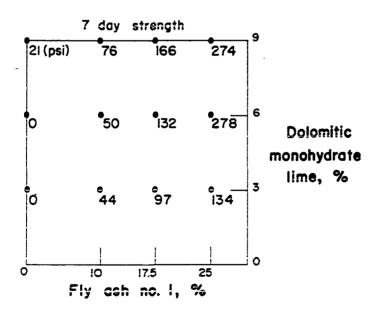
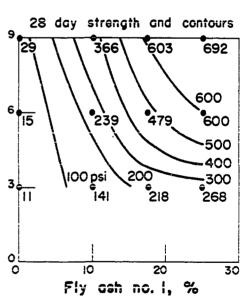
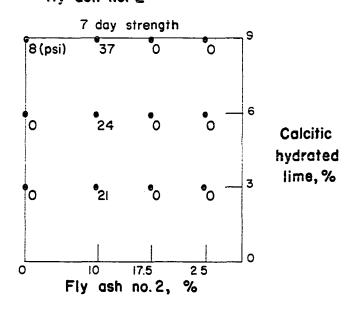
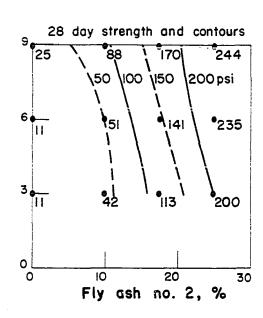
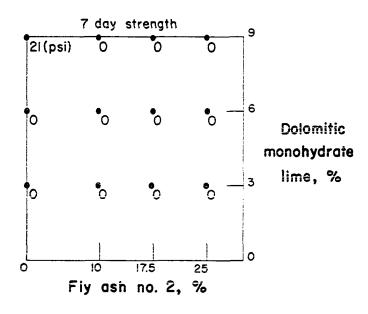

Lime. It has been observed by other investigators that in lime-fly ash stabilization, dolomitic monohydrate lime produces greater strength than calcitic hydrated lime

Figure 10. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 1 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials dune sand lime fly ash no. !


Figure 11. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 2 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials

dune sand lime fly ash no. 2

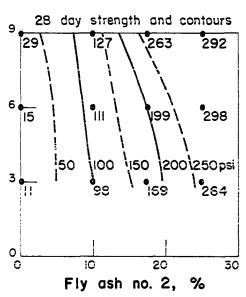
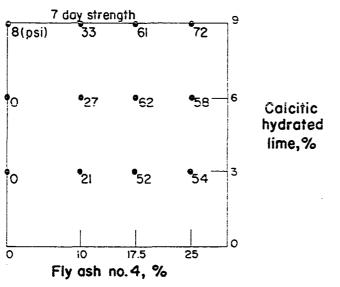
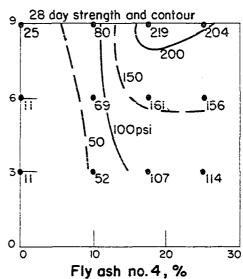
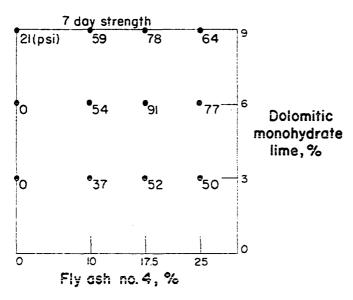





Figure 12. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 4 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
dune sand
lime
fly ash no.4

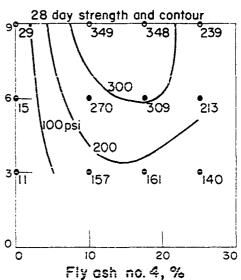
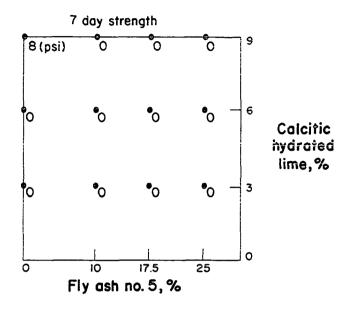
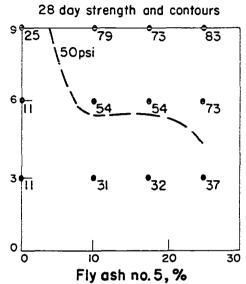
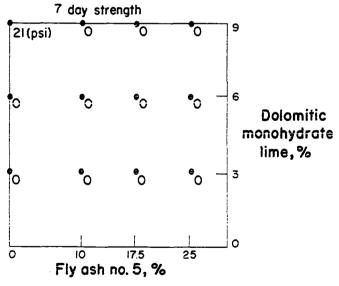





Figure 13. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 5 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
dune sand
lime
fly ash no.5

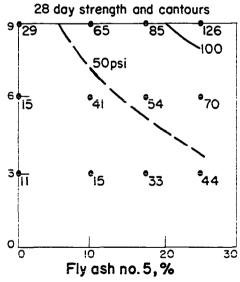
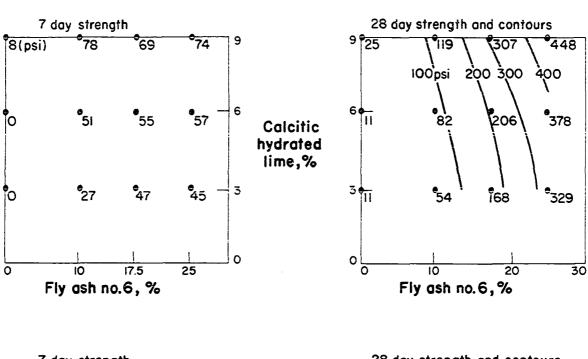



Figure 14. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 6 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

dune sand lime fly ash no.6

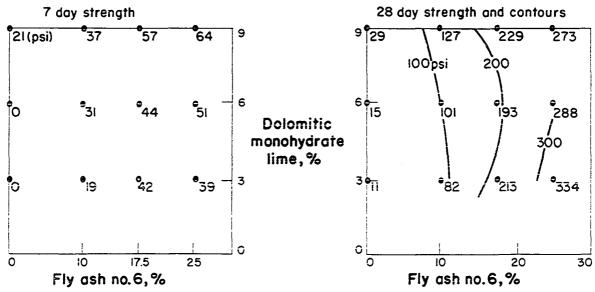
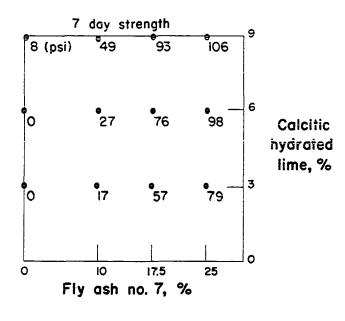
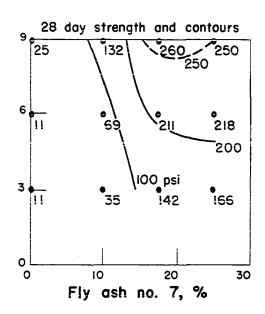
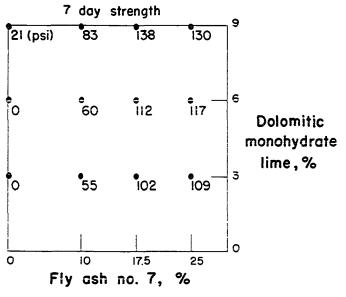





Figure 15. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 7 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials dune sand lime fly ash no. 7

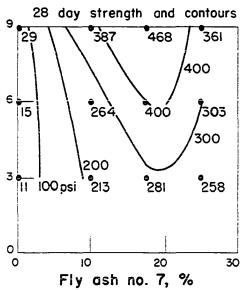


Figure 16. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 8 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
dune sand
lime
fly ash no. 8

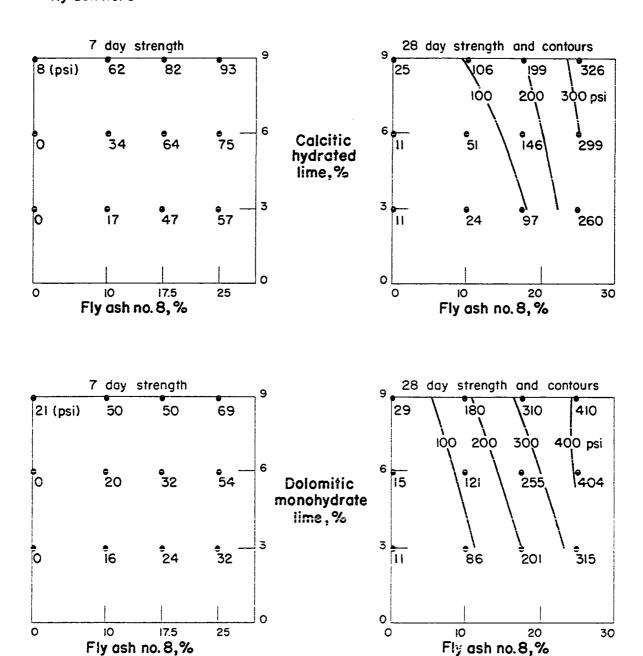
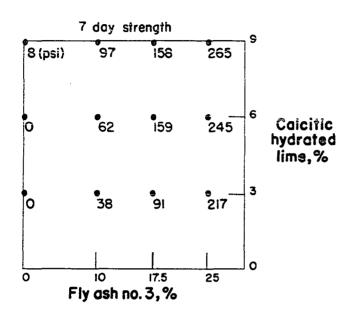
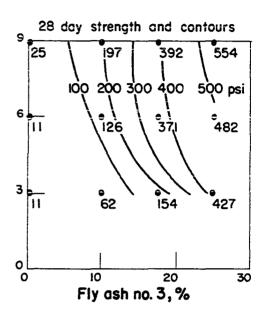
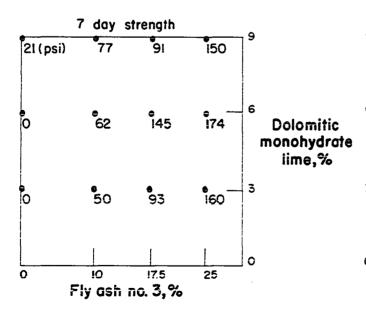





Figure 17. Immersed unconfined compressive strength values obtained for several combinations of dune sand, lime, and fly ash No. 3 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
dune sand
lime
fly ash no. 3

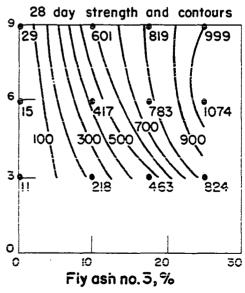
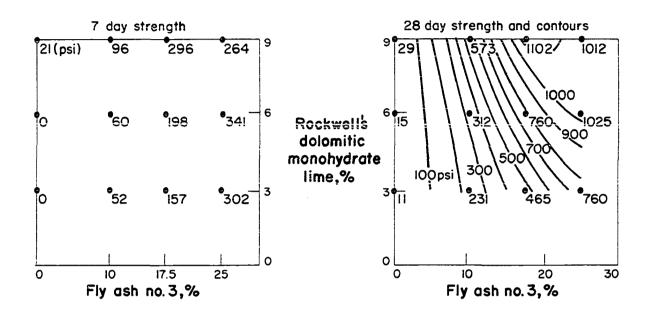
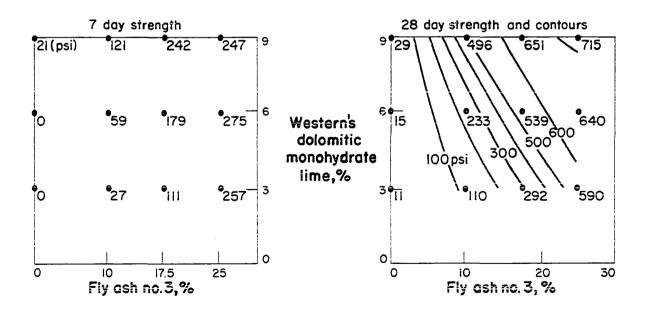




Figure 18. Immersed unconfined compressive strength values obtained for several combinations of dune sand, dolomitic monohydrate limes, and fly ash No. 3 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
dune sand
dolomitic monohyrate lime
fly ash no.3

(15,19,28,49,55,63). The analysis of the effectiveness of the limes which follows is based on the variety of lime and fly ash combinations used in this investigation.

In mixtures of dune sand, lime, and fly ash No. 1, No. 2. No. 4, or No. 7, dolomitic monohydrate lime was more effective than calcitic hydrated lime for both 7 and 28 day curing periods. With fly ash No. 5 test results were erratic, and conclusions can not be made as to which lime was more effective. With fly ash No. 6, calcitic hydrated lime was more effective than dolomitic monohydrate lime. With fly ash No. 8, 7 day strengths of mixtures with calcitic hydrated lime were greater than with dolomitic lime, but dolomitic monohydrate lime gave better 28 day strengths. Thus no general conclusion can be made as to which kind of lime, calcitic hydrated or dolomitic monohydrate, is best in lime-fly ash stabilization of dune sand; the kind of lime to use depends strictly on the properties of the fly ash. Nevertheless it can be concluded on the basis of 28 day strengths only, that dolomitic monohydrate limes generally give better strengths than calcitic hydrated lime. The only exception to this was in mixtures containing fly ash No. 6.

Tests with fly ash No. 3 deserve special discussion (Figures 17 and 18). Three dolomitic monohydrate limes were

used with this fly ash: one produced by U. S. Gypsum Company, one by Rockwell Lime Company and one by Western Lime and Cement Company. Comparing the effectiveness of of calcitic hydrated lime with the dolomitic monohydrate limes. it was observed that for 7 day strength the U. S. Gypsum calcitic lime was better than the dolomitic lime from the same company but slightly less effective than the dolomitic limes from Rockwell and Western. All three dolomitic limes gave 28 day strengths much higher than the calcitic lime. Of the three dolomitic monohydrate limes tested the one from Rockwell was most effective. No explanation was found for the differences in strength produced by the dolomitic limes. An investigation is presently being conducted in the Engineering Experiment Station of Iowa State University to compare the effectiveness of various commercial dolomitic and calcitic limes (69). It appears that the effectiveness of dolomitic limes depends upon the temperature and period of burning, the amount of impurities, the gradation, and probably other factors.

Fly ash. The strength of mixtures made with fly ash No. 3 attained very high strengths. Mixtures made with dolomitic monohydrate limes, either from U. S. Gypsum or Rockwell, showed a strength of 1000 psi after 28 days of curing. This strength approaches that of a lean concrete. Mixtures made with the other dolomitic monohydrate lime

from Western and fly ash No. 3 showed a strength after 28 days curing of about 600 psi, which is also very good. Strengths of about 500 psi for the same curing period were obtained with calcitic hydrated lime. Seven day strengths of 200 or 300 psi, depending on the type of lime used, were obtained with this fly ash.

Fly ash No. 1 also gave good strengths. Six hundred psi was obtained after 28 days curing in mixes with dolomitic monohydrate lime. The 7 day strength for the same mixes was close to 300 psi, but the results obtained with this fly ash and calcitic hydrated lime after 28 days curing were very poor, barely reaching 100 psi.

Other fly ashes that gave strengths over 300 psi after 28 days curing were: fly ash No. 6 in mixes with calcitic hydrated lime, and fly ash No. 7 with dolomitic monohydrate lime. Many fly ashes did not reach the desired figure of 300 psi after 28 days curing in mixes with either of the limes used.

The above results point out that the strengths obtained depend very greatly on the fly ash used. This indicates the great disparity of pozzolanic properties of fly ashes. Some of them with lime may give strengths comparable to those obtained with cement while others develop barely any strength.

Fly ash No. 3 was used with three different dolomitic monohydrate limes; the densities varied also for mixtures with these three dolomitic limes, but the strengths were not in relationship to the density but to the admixture content and amount. Fly ashes of low specific gravity (Nos. 2, 4 and 7) imparted very low dry densities to the sand, lime and fly ash mixtures.

Friable loess

Strength contours. The strengths obtained in the friable loess mixtures with lime only, were decreased by the addition of fly ash No. 1. Additions of fly ash No. 2 did not increase the strength of the friable loess and lime mixtures to a great extent. Additions of fly ash No. 3 increased the strength some but not greatly. The strength contours with friable loess are therefore sparse and difficult to draw (Figures 19 to 21).

The only type of fly ash that may be recommended to use with lime to stabilize friable loess is a high quality fly ash like No. 3. The verticality of the contours with fly ash No. 3 favors the use of small amounts of lime and large amounts of fly ash. The recommended amounts are 3 percent dolomitic monohydrate lime, 25 percent fly ash No. 3, and 72 percent friable loess. If the price of the fly ash is prohibitive this soil can be stabilized with lime alone.

Density. Galcitic hydrated lime gave lower density than equal amounts of dolomitic monohydrate lime. Fly ash No. 2, of low specific gravity, lowered the density in proportion to the amount of fly ash in the mixture. No correlation was found between density and strength.

Lime. Dolomitic monohydrate lime with or without fly ash always gave better strengths than calcitic hydrated lime. Wine percent dolomitic monohydrate lime added to friable loess showed an immersed strength of 400 psi, which is considered adequate for a road base or a subbase course.

Fly ash. Fly ashes Nos. 1 and 2 either did not greatly improve the strength of friable loess and lime mixtures or were detrimental to the point where they actually lowered the strength in some cases. This may be due to the fact that friable loess may have greater pozzolanic activity with lime than fly ashes Nos. 1 or 2. Fly ash No. 3 gave strength improvements to friable loess and lime mixtures, particularly for mixtures with low lime contents. This is the only fly ash tested that may be recommended to use with lime, preferably dolomitic monohydrate, in the stabilization of friable loess.

Gumbotil

Strength contours. Strength contours tend to be horizontal for low lime contents and become vertical for

Figure 19. Immersed unconfined compressive strength values obtained for several combinations of friable loess, lime, and fly ash No. 1 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials triable loess lime fly ash no.1

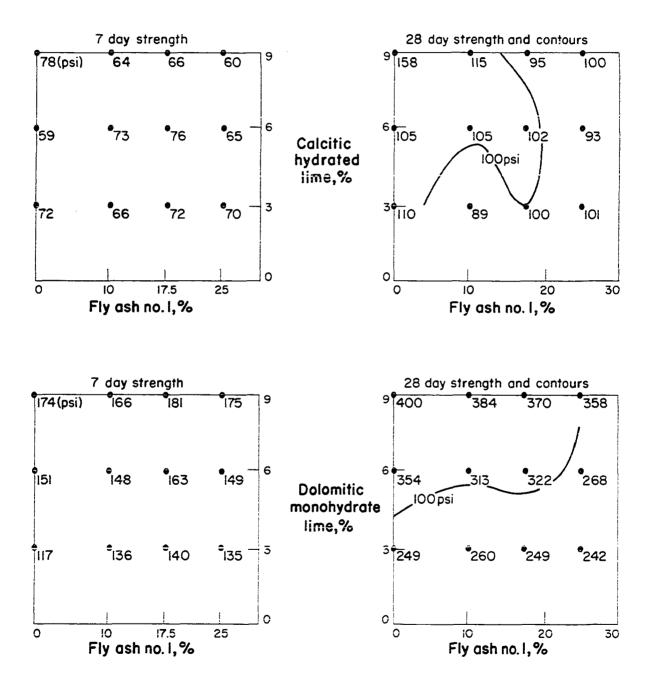


Figure 20. Immersed unconfined compressive strength values obtained for several combinations of friable loess, lime, and fly ash No. 2 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials friable loess lime fly ash no. 2

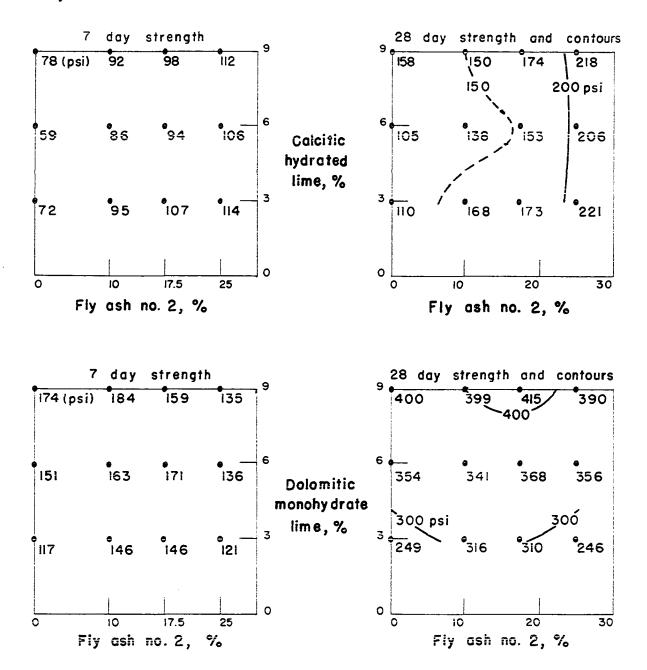
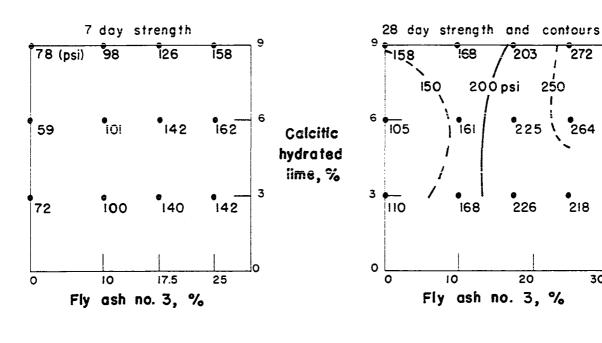
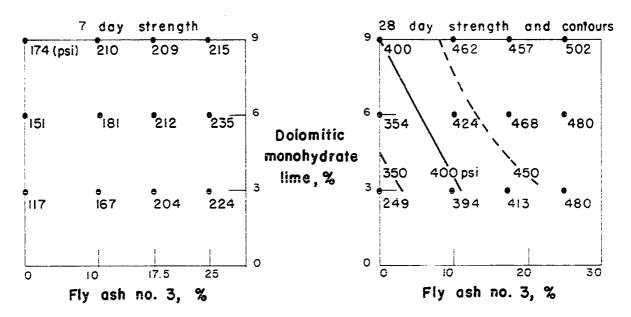
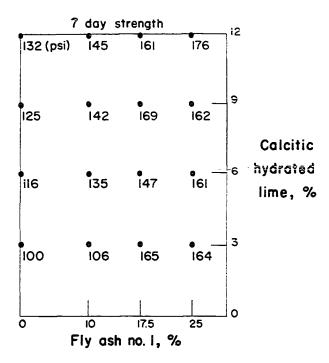
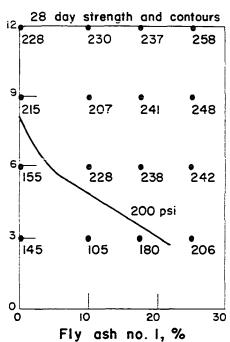




Figure 21. Immersed unconfined compressive strength values obtained for several combinations of friable losss, lime, and fly ash No. 3 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
friable loess
lime
fly ash no. 3


high amounts (Figures 22 to 24). This indicates that lime up to a certain amount increases strength, and then fly ash becomes important in the development of strength. There is no definite ratio of lime to fly ash that gives the highest strengths. Recommendations on the amounts of lime and fly ash to be used should be based on the need of a minimum amount of lime, which is about 5 percent. Low amounts of lime required high amounts of fly ash and high amounts of lime required low amounts of fly ash. Several combinations of lime and fly ash may be chosen depending on the desired strength. The amount of lime required will be between 5 and 9 percent, and that of fly ash between 10 and 25 percent.


<u>Density</u>. Density values did not correlate with strength, neither did they correlate with the kind of lime used. The fly ash of low specific gravity, No. 2, gave lower densities than the other two fly ashes used.

Lime. The calcitic hydrated lime in low amounts gave greater strengths than low amounts of dolomitic monohydrate lime. Dolomitic monohydrate lime was better than calcitic in high amounts. This was observed for mixtures with and without fly ash. High amounts of lime may stabilize gumbotil soil satisfactorily. For instance, 12 percent dolomitic monohydrate lime gave a 7 day strength of 190 psi and a 28 day strength of 298 psi.

Figure 22. Immersed unconfined compressive strength values obtained for several combinations of gumbotil, lime, and fly ash No. 1 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials gambotti lime fly ash no. I

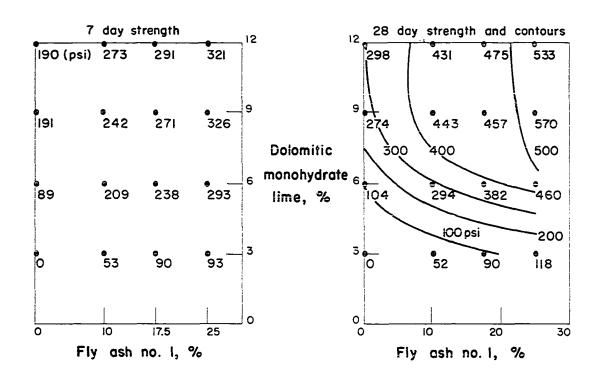
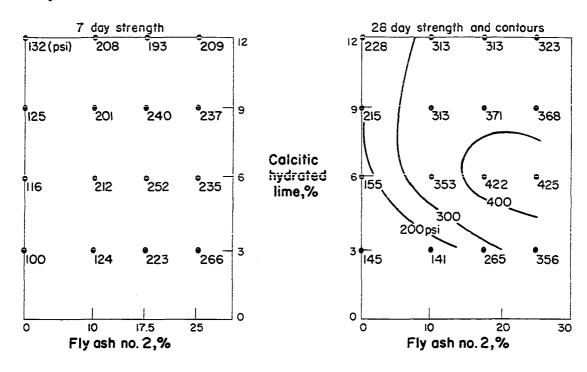
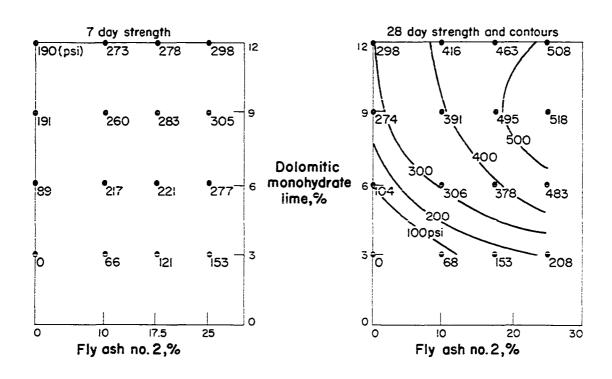
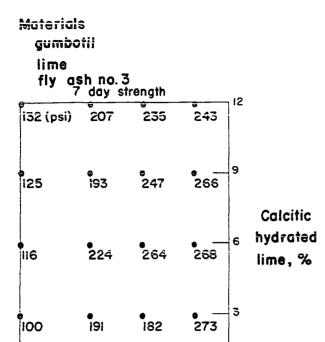
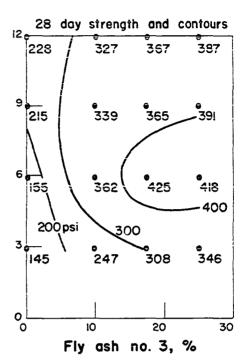
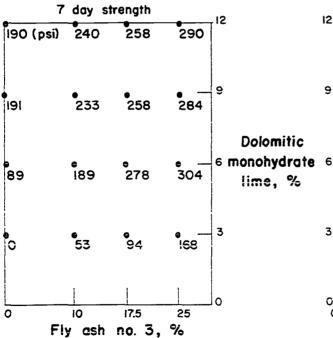
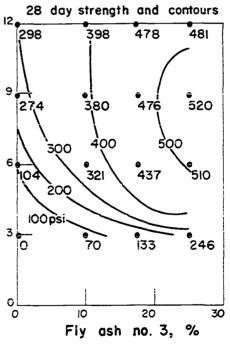



Figure 23. Immersed unconfined compressive strength values obtained for several combinations of gumbotil, lime, and fly ash No. 2 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials gumboiii lime fly ash no.2

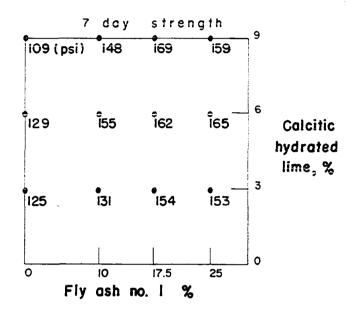

Figure 24. Immersed unconfined compressive strength values obtained for several combinations of gumbotil, lime, and fly ash No. 3 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

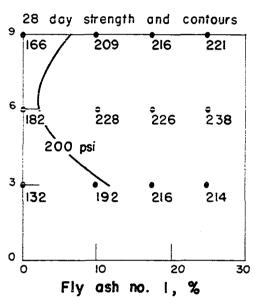


17.5

Fly ash no. 3, %

<u>Fly ash.</u> All three fly ashes tested were effective in improving the strength that may be obtained with gumbotil and lime alone. Strengths of from 400 to over 500 psi were obtained. Consequently the use of fly ash with lime may be recommended to stabilize gumbotil to meet the standards of a base course.


Alluvial clay


Strength contours. There is no definite optimum ratio of lime to fly ash in the tests made with alluvial clay soil (Figures 25 through 27). The dolomitic monohydrate lime content of mixtures was very critical for the development of strength. For high amounts of dolomitic lime the fly ash content was more critical. With calcitic hydrated lime, the fly ash content was almost the only component contributing to strength as seen by the verticality of the contours for mixtures with calcitic lime.

The recommended amounts and kinds of lime and fly ash to stabilize alluvial clay are from 5 to 7 percent dolomitic monohydrate lime with from 10 to 25 percent of any fly ash used, or else 3 percent calcitic hydrated lime with 25 percent fly ash No. 3. Fly ashes Nos. 1 and 2 are not recommended with calcitic hydrated lime because the same strengths may be obtained with dolomitic monohydrate lime only, in amounts from 6 to 9 percent.

Figure 25. Immersed unconfined compressive strength values obtained for several combinations of alluvial clay, lime, and fly ash No. 1 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
alluvial clay
lime
fly ash no. i

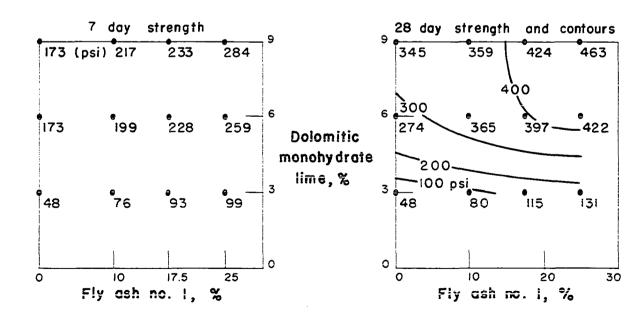
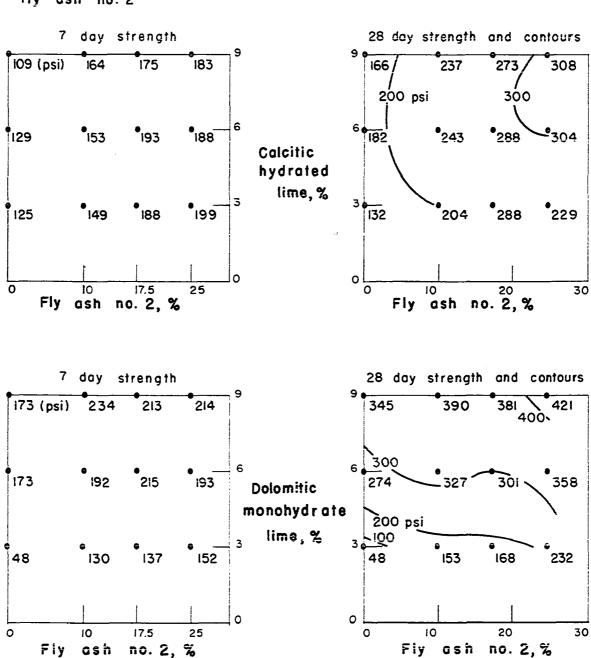
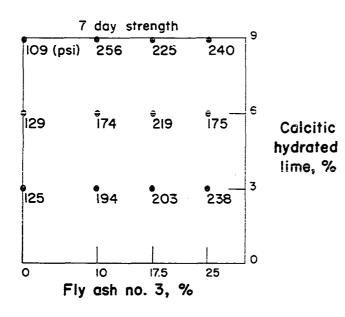
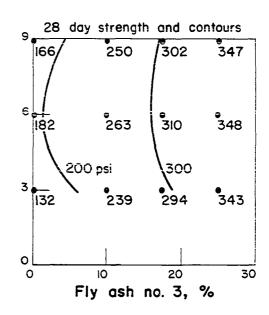
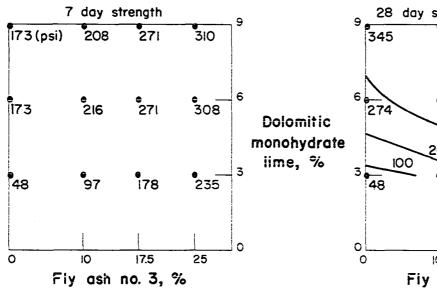
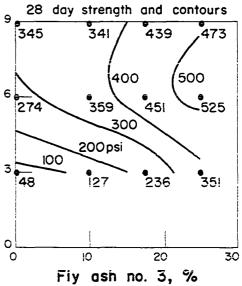


Figure 26. Immersed unconfined compressive strength values obtained for several combinations of alluvial clay, lime, and fly ash No. 2 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
alluvial clay
lime
fly ash no. 2


Figure 27. Immersed unconfined compressive strength values obtained for several combinations of alluvial clay, lime, and fly ash No. 3 for 7 and 28 day curing periods, and strength contour lines for 28 day results.

Materials
alluvial clay
lime
fiy ash no. 3

Density. No relationship was found between density and strength. The same statements made above on the relationship between specific gravity of fly ash and density of mixtures also apply here.

Lime. The calcitic hydrated lime gave better strengths than dolomitic monohydrate for the lowest amount of lime, 3 percent. The effectiveness is reversed for higher amounts. Without fly ash, 9 percent of plain dolomitic monohydrate lime may properly stabilize alluvial clay. Strengths of 173 psi after 7 day curing, and 345 psi after 28 days were obtained.

Fly ash. The overall effectiveness of fly ash No. 3 exceeded that of the other two fly ashes. Fly ash No. 1 was better than fly ash No. 2 with dolomitic monohydrate lime, but the effectiveness was reversed with calcitic hydrated lime; fly ash No. 2 was better than fly ash No. 1.

Strengths from 400 to 500 psi may be obtained with dolomitic lime and fly ash. This is an adequate strength level. Only fly ash No. 3 could be used with calcitic lime to stabilize alluvial clay. This is due to the low amount of calcitic hydrated lime required, although the strengths obtained, of the order of 350 psi, are rather low.

Discussion

Based on this study, no conclusions can be drawn as to the best ratio of lime to fly ash or as to the amount of lime and fly ash that could be used to stabilize any kind of soil.

Based on the results obtained with dune sand the amount of lime recommended for sandy or granular soils is from 3 to 6 percent and that of fly ash from 10 to 25 percent.

Unless fly ash is of a very high pozzolanic value, it should not be used with friable loess. If such a fly ash is available, 3 percent lime and 25 percent fly ash are recommended. The use of dolomitic monohydrate lime is favored.

The amounts of lime and fly ash best for both alluvial clay and gumbotil soils vary. For gumbotil, between 5 and 9 percent lime and between 10 and 25 percent fly ash are recommended. For alluvial clay, between 5 and 7 percent dolomitic monohydrate lime and between 10 and 25 percent fly ash are recommended. Lower amounts of lime may be used if it is a calcitic hydrated lime.

In general, dolomitic monohydrate limes give better strengths with fly ash than calcitic hydrated lime for the curing temperatures used (70°F). It should be pointed out that with one fly ash, No. 6, calcitic hydrated lime was

more effective than dolomitic monohydrate lime. For low amounts of lime, the calcitic hydrated is more effective than the dolomitic monohydrate in the stabilization of clayey soils with lime and fly ash; at higher lime contents, dolomitic monohydrate gives better strengths than calcitic hydrated.

Fly ash, unless of a high quality, is detrimental in the stabilization of friable loess; in all other soils it was beneficial, giving better strengths than mixtures of soil-lime without fly ash.

In another report it was presented some work done at the Iowa Engineering Experiment Station on the pozzolanic behavior of fly ash (67). Twenty two fly ashes were studied in that report, among them those used in these tests. No new information is found here that might broaden our knowledge on the relation between pozzolanic activity of a fly ash and its physical or chemical characteristics.

The maximum dry density, for the same compactive effort, of soil, lime, and fly ash mixtures does not correlate with strength. Density varies with amounts and kind of lime and fly ash. Delemitic monohydrate lime gives consistently greater densities in friable losss, lime and fly ash mixtures than calcitic hydrated lime. Fly ashes of low specific gravity produce lower densities than fly ashes of higher specific gravity.

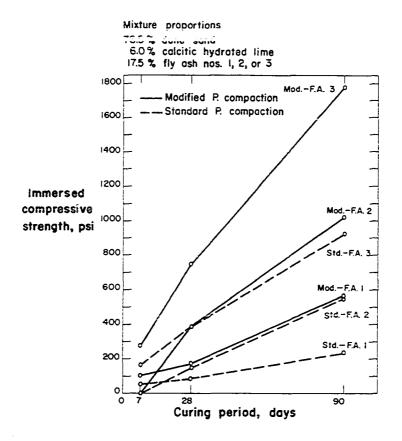
Effect of Compactive Effort on Strongth of Soil, Line, and Fly Ash Mixtures

The present trend in compaction of earth embankments, subgrades and stabilized soils is towards compactive efforts greater than the standard Proctor. The Corps of Engineers specifies the required density in airfield construction as a percentage of the modified maximum density. Although some work has been done in comparing the strengths obtained at different compactive efforts (68,40) only one fly ash was used, and the specimens were cured only up to 28 days.

In this work three fly ashes were used with the sand and gumbotil and one fly ash with the alluvial clay and loess. Curing periods were carried up to 90 days. The results for different moisture contents may be seen in Figures 2 to 9, and the maximum strengths versus time are plotted in Figures 28 to 31, and given in Tables 9 to 12.

Discussion of results

In all the eight comparative studies made, the modified compaction gave strengths considerably greater than the standard compaction. This increase is appreciated in all curing periods, and ranges from a minimum of 50 percent increase to a maximum of 160 percent without any correlation whatsoever and depending on the kind of soil and fly ash and probably on the kind of lime also.


The rate of strength increase for 7, 28 and 90 days curing is almost a straight line relationship, except for those mixes made with the gumbotil. Greater rate of increase with time is found in the friable soils (dune sand and friable losss), in which there is not a break in the rate of increase up to the longest curing period used. After 90 days curing, all the mixtures show that the strength increase also takes place at longer curing periods.

The convenience of compacting the soil, lime and fly ash mixtures to the highest possible degree is obvious. By a closer contact of particles at the proper moisture, the surface reactions have more opportunity to develop. This results in the higher strengths obtained with the modified compaction.

When lime and fly ash are used to stabilize friable soils, account for the steady increase in strength with time has to be made (Figures 28 to 31). Early strengths may be low, but the continuous gain in strength over long periods of time increases the quality of the pavement made with lime-fly ash stabilized courses. This is desirable when the volume of traffic is expected to increase with time.

Figure 28. Effect of compactive effort on strength of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash.

Figure 29. Effect of compactive effort on strength of a 76.5:6:17.5 mixture of gumbotil, calcitic hydrated lime, and fly ash.

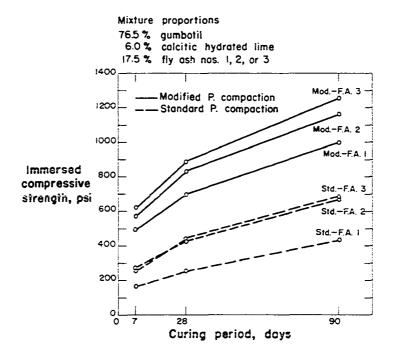
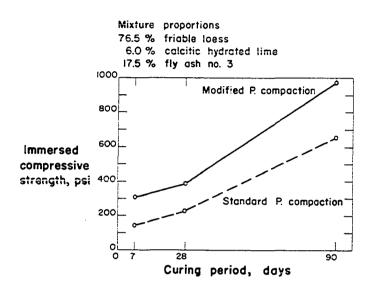



Figure 30. Effect of compactive effort on strength of a 76.5:6:17.5 mixture of friable losss, calcitic hydrated lime, and fly ash No. 3.

Figure 31. Effect of compactive effort on strength of a 76.5:6:17.5 mixture of alluvial clay, calcitic hydrated lime, and fly ash No. 3.

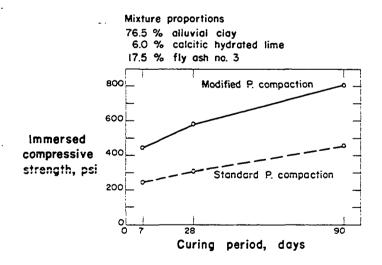


Table 9. Maximum strengths obtained at different curing periods for standard and modified Proctor compaction of 76.5:6:17.5 dune sand, calcitic hydrated lime and fly ash mixtures

Fly ash used,	Compaction	Maximum immersed unconfined compressive strength, psi			
ño.	_	7 day	28 ඊකු	90 day	
1	Standard	55	90	240	
	Modified	105	170	570	
2	Standard	0	150	560	
2	Mod1fied		390	1025	
3	Standard	165	390	930	
3	Modified	280	750	1780	

Table 10. Maximum strength obtained at different mixing periods for standard and modified Proctor compaction of a 76.5:6:17.5 friable loss, calcitic hydrated lime, and fly ash No. 3 mixture

	Mazi	mum immersəd	unconfined	
Compaction .	compressive strength, psi			
	? day	28 da y	90 gaå	
Standard Modified	145 305	235 390	655 980	

Table 11. Maximum strength obtained at different curing periods for standard and modified Proctor compaction of 76.5:6:17.5 gumbotil, calcitic hydrated lime, and fly ash mixtures

Fly ash		Maxim	um immersed	unconfined		
used,	Compaction	compressive strength, psi				
No.		7 da y	28 đay	90 đa y		
1 1	Standard Modified	170 490	260 700	中 40		
2 2	Standard Modified	270 570	430 835	67 <i>5</i> 1170		
3 3	Standard Modified	255 620		685 1260		

Table 12. Maximum strengths obtained at different curing periods for standard and modified Proctor compaction of a 76.5:6:17.5 mixture of alluvial clay, calcitic hydrated lime, and fly ash No. 3

	Maxim	ım immersed	unconfined
Compaction		ength, pai	
	? day	28 day	90 day
Standard Modified	240 445	310 585	460 810

Influence of Temperature of Materials at Fine of Compaction

No reports have been published on the influence of temperature of the materials at time of compaction on soil, lime, and fly ash mixtures. The ambient temperature between two consecutive days in Iowa may in extreme cases be 40° F, and that between a cool day in the early working season and another day in the hot part of the summer may be 60° F. This phase of the work was undertaken to determine the influence of extreme cases of ambient temperature during the working season on the strength of soil, lime, and fly ash mixtures.

The soils used were dune sand and gumbotil in mixes with 76.5 percent soil, 6 percent calcitic hydrated lime and 17.5 percent fly ash No. 3. A very reactive fly ash was used because it should accentuate the findings. A series of batches were mixed and compacted with the soil, lime, fly ash and water in a cooled state (about 54° F), and another series in a heated one (about 104° F). The soil, lime, and fly ash mixtures were molded at several water contents, and then stored in the moist room at $70 \pm 3^{\circ}$ F. The maximum immersed unconfined compressive strength and density values obtained are reported in Table 13.

Discussion of results

Although the data do not show a marked trend, mixing and compacting with hot materials may show a detrimental influence in clayey soils stabilized with lime and fly ash. The density and strength were somewhat reduced. No noticeable effects are seen in the tests made with sand.

According to the results, the basic reaction between lime and fly ash is not influenced by the temperature, in the range 54 - 1040 F, of the materials at the time of mixing. This statement is based on the results obtained with sand, which may be considered as an aggregate inert to lime and fly ash. The slight decrease in strength and density in the hot batches made with the clayey soil, gumbotil, is caused by the reaction between the lime and the highly active surface of clay particles prior to compaction.

Further tests were made in which the materials were mixed at the same temperatures as above, and then stored at the same temperatures of mixing for four hours before compaction. The specimens were cured in the moist room. Dune sand was the only soil used. The maximum results obtained, from batches made at different water moisture contents given in Table 14.

The results obtained further prove that the reaction between lime and fly ash in itself is not affected by the temperature of the materials, between 54 and 1040 F, at

Table 13. Influence of mixing temperature of materials on the strength of a 76.5:6:17.5 mixture of soil, calcitic hydrated lime, and fly ash No. 3, with compaction after mixing

8011		Temperature Op		immersed u		Maximum dry density,	Optimum M. C. for maximum den-
			7 day	28 d ay	90 day	pef	sity, %
Dune	sand	54	154	422	1004	123.8	1.2
14	H	70	165	390	930	124.2	12
Ħ	ti	1.04	158	382	1010	124.2	12
lumb	ot1l	54	302	455	620	94.1	25
Ħ		70	255	445	685	93.0	25
16		104	238	350	492	92.5	25

al ways with the clay particles, and some of these reactions may be activated by temperature, these reactions substract or make inactive part of the lime for the pozzolanic reaction with fly ash and soil particles, causing a decrease in compacted density and in subsequent strength.

Effect of Delay of Compaction After Wet Mixing on Strength of Soil, Lime, and Fly Ash Mixtures

Actual road construction is subject to many disturbances. When interruptions occur right after mixing of lime and fly ash with soil and water, and compaction is delayed the strength of the stabilized soil may be affected. A few tests were made to establish a criterion on the maximum permissible length of time to be allowed to soil, lime and fly ash mixtures between wet mixing and compaction.

Selected mixes using dune sand or gumbotil, calcitic hydrated lime, and fly ashes Nos. 1, 2, or 3 were made. The mixtures were prepared with different amounts of water to obtain maximum values for strength and density. After mixing the soil, lime, fly ash and water, one set of mixtures was immediately compacted into specimens; another set was stored for 4 hours in the moist room at 70° F and then specimens were compacted; and another set was stored for 24 hours in the same moist room before compaction of specimens.

Table 14. Influence of mixing temperature of materials in the strength of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash No. 3, in which compaction was delayed four hours after mixing

mperature	Maximum	immersed u	nconfined	Maximum	Optimum M. (
Φ£,	compres	sive streng	th, psi	, psi dry, density,	
	7 day	28 day	90 day	pof	density, %
5'L1.	140	369	960	124.0	12
70	141	348	935	122.7	12
104	148	342	973	122.0	12

The maximum values for soreign and density are given in Tables 15 and 16.

Table 15. Results obtained with 76.5:6:17.5 mixtures of dune sand, calcitic hydrated lime, and fly ash compacted after different lapses of time following wet mixing

Fly		Maximum	Maxi	num imme	rsed
esh	Setting time	dry den-	unco	nfined c	:0E-
No.		sity, pcf	pres	sive str	ength
			7-day	28-day	90 - day
1 1 1	Molded after mixing Molded 4 hrs. after mixing		55 45	9 0 81	240 219
1 2 2	Molded 24 hrs. after mixing Molded after mixing	112.3	41 0	60 150	210 560
2	Molded 4 hrs. after mixing Molded 24 hrs. after mixing	112.5	0	159 141	532 41?
3 3 3	Molded after mixing Holded 4 hrs. after mixing Molded 24 hrs. after mixing			390 348 243	930 935 945

Table 16. Results obtained with 76.5:6:17.5 mintures of gumbotil, calcitic hydrated lime, and fly ash compacted after different lapses of time following wet mixing

Fly ash	Setting time	Maximum dry den-		ined o	ompres-
No.			7-day	28 - da	y 90-day
	Molded after mixing Molded 4 hrs. after mixing Molded 24 hrs. after mixing		151	260 260 279	440 431 327
333	Molded after mixing Molded 4 hrs. after mixing Molded 24 hrs. after mixing		260	445 405 244	685 596 351

Dune sand

Strength and density of the mixture with dune sand decrease slightly as the time between wet mixing and compaction increases. Regarding strength, the greatest decrease is found in mixtures made with fly ash No. 3, in which for 7 days curing it dropped from 165 psi for no delay in molding to 118 psi for a 24 hour delay; for 28 days curing the drop is from 390 to 243 psi; for 90 days curing there is no difference between the strength of specimens molded after mixing and of those molded after a 24 hour delay. With fly

ash No. 2 specimens, after 90 days curing, there is also a great difference between the strengths of mixtures with no delay in compaction and those with 24 hours delay, the strength for these two cases being 560 and 417 psi respectively. With fly ash No. 1 the decrease is not very significant although it is steady with time of delay.

In general the decrease in strength is very slight in mixtures in which compaction was performed 4 hours after wet mixing. The decrease is more accentuated for the mixtures stored 24 hours before compaction.

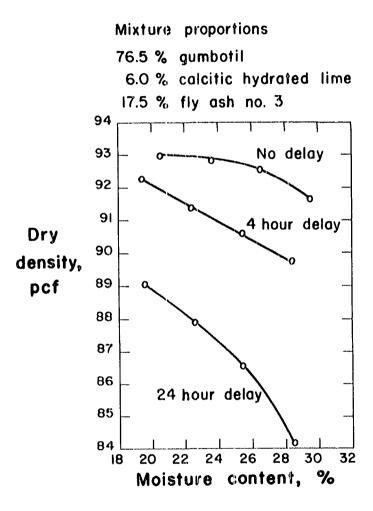
A delay in compaction after wet mixing also brings about a decrease in dry density of sand, lime, and fly ash mixtures. The decrease amounts to less than 2 percent after a 24 hour delay.

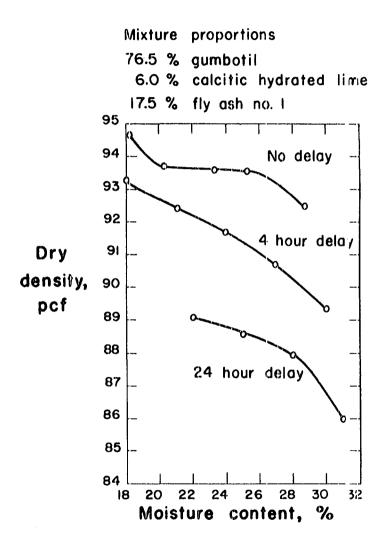
Gumbotil

A great decrease in strength correlates with the time of delay in compaction after wet mixing of gumbetil, calcitic hydrated lime, and fly ash mixtures. With a 24 hour delay for fly ash No. 3 the strengths were reduced from 32 to 49 percent, depending on the curing period. The reduction in the fly ash No. 1 mixture is less important, showing up in 7 and 90 day strengths but not in those of 28 days.

paction increased. As the maximum dry density was undefined in mixtures with gumbotil, the moisture-dry density relationships are plotted for the range in moisture content in which the maximum strength were obtained (Figures 32,33). The compacted density is lowered to a great extent by a delay in compaction. The drop in dry density is about 2 pcf for a 4 hour delay and about 5 pcf for a 24 hour delay.

Discussion


The results stress the importance of proceeding with compaction as soon as possible after wet mixing of soil, lime, and fly ash mixtures. This is highly recommended with montmorillonitic clayey soils in which strengths may drop by about 40 percent and dry density by about 6 percent if compaction is delayed one day after wet mixing. With sandy soils, the drop in strength and dry density is not very significant, and compaction may proceed the following day after wet mixing without significantly impairing the strength or dry density.


The lowering of strength and density may be for one or more of three different reasons:

- 1. Formation of carbonates by chemical reaction between lime and the carbon dioxide of the atmosphere.
 - 2. Pozzolanic reactions between lime and fly ash.

Figure 32. Moisture-density relationships Figure 33. Moisture-density relationof a 76.5:6:17.5 mixture of gumbotil, calcitic hydrated lime, and fly ash No. 3, in which compaction was carried at different intervals of time after wet mixing.

ships of a 76.5:6:17.5 mixture of gumbotil, cal. citic hydrated lime, and fly ash No. 1, in which compaction was carried at different intervals of time after wet mixing.

3. Reactions between lime and soil particles.

The first two are probable in sandy soils and all three in clayey soils.

A very small reduction in strength and density in sandy soils indicates that the first two processes are not developed to a great extent. Because the carbonation of lime takes place at a rapid rate in a moist condition and the unlikeness of pozzolanic reactions between lime and fly ash in a loose state, the first reaction is likely mainly responsible for the lowering of density and strength in sandy soils.

The reactions between lime and soil particles are very important in clayey soils. The unbalanced electrical surface forces of the clay particles adsorb calcium cations of lime; calcium ions also produce a crowding action of clay particles; and lime reacts with the soil particles in a pozzolanic action. These reactions account for a great part of the reduction of strength and density when compaction does not follow wet mixing of clayey soil, lime and fly ash mixtures.

Effect of Temperature on Strength of Soil, Lime, and Fly Ash
Mixtures

High temperature is known to accelerate the reaction between lime and fly ash. The knowledge of the rate of strength increase with temperature of curing is important as a determinant of the working season for lime and fly ash stabilization. It also may throw some light on the pre-

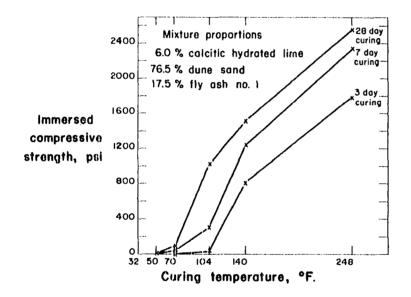
diction of long-term strengths at ambient temperatures by curing for a short period of time at high temperatures.

Dune sand was used in these studies with calcitic hydrated lime and fly ashes Nos. 1, 2 or 3, or with dolomitic monohydrate lime and fly ash No. 3. The data are given in Tables 17 and 18 and the results are plotted in Figures 34 to 37.

Calcitic lime

The results point out the beneficial effects of high curing temperatures on the strength of soil, lime, and fly ash mixtures. The rate of strength increase varies with temperature. With calcitic lime the lowest increase in psi per degree F is found between 50°F and 70°F as seen by the small value of the tangent of the lines joining the strength values at 50°F and 70°F. The strength then increases at a higher rate between 70°F and 104°F. At 104°F there is a break in the rate of strength for specimens cured for 28 days. Between 1040F and 1400F, specimens cured for 3 and 7 days experience the highest rate of increase in psi per degree F; those cured for 28 days are still gaining strength, but the rate is a little lower than that at the previous range of temperatures. Between 140°F and 248°F the strength is still increasing; but the rate of increase, although still very important, is smaller than for some of the other tempstrength should still be increasing for curing temperatures over 248°F. Steam curing mixtures made with fly ash No. 3 at temperatures higher than 248°F may make them reach strengths of 4000 psi or over after a few hours curing.

Dolomitic lime


The pattern of strength increase for mixtures made with dolomitic monohydrate lime is very different from the one given by the mixtures made with calcitic hydrated lime (Compare Figure 36 with Figure 37). The rate of strength increase at low temperatures is greater than with calcitic lime, but at high temperatures it is not as great. At about 135°F the strengths are the same for both limes; dolomitic lime gave better strengths below that curing temperature; above that temperature calcitic lime was the best one.

Discussion

The pozzolanic activity between lime and fly ash is greatly influenced by temperature. After curing periods of 3 and 7 days, all specimens cured at 50°F failed during immersion, but those cured at 248°F developed strengths comparable with those of concrete. At ambient temperatures, dolomitic monohydrate lime gave higher strengths than calcitic hydrated lime, but at high temperatures calcitic lime was better than dolomitic.

Figure 34. Effect of temperature on strength of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash No. 1.

Figure 35. Effect of temperature on strength of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash No. 2.

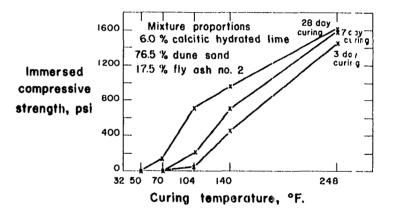
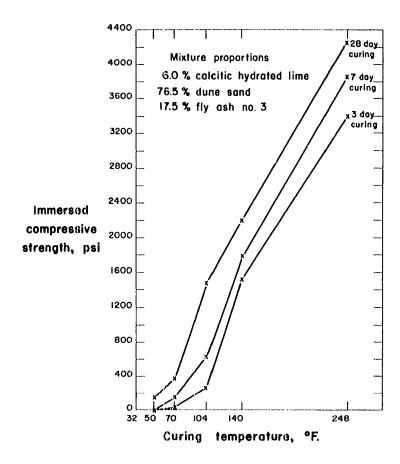



Figure 36. Effect of temperature on strength of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash No. 3.

Figure 37. Effect of temperature on strength of a 76.5:6:17.5 mixture of dune sand, dolomitic monohydrate line, and fly ash No. 3.

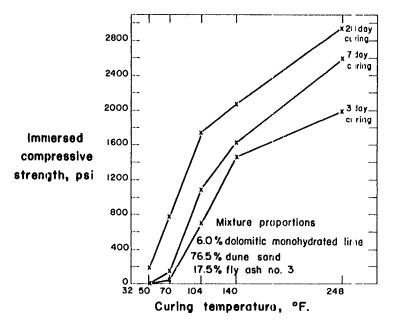


Table 17. Effects of ouring temperature on strongth of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash

Fly ash	Curing	Immersed	Immersed unconfined compressive			
No.	temperature	Strength, psi				
	$o_{\mathbf{F}}$	3 day	7 day	28 day		
1	50	0	.0	0		
1 1 1	70 104	0 <u>1</u> 41	42 295	78 1018		
i	140	813	1216	1488		
ī	248	1783	2342	2572		
2	50	0	0	0		
2	70	0	0	141		
2	104	43 449	208	718		
2 2 2 2 2	140 248	44 9 1477	712 1595	971 1627		
3	<i>5</i> 0	0	0	1 5 5		
3	70	37	159	371		
3	104	268	159 635 1789	371 14 9 6		
3 3 3 3 3	140	1530	1789	2199		
3	248	3407	3862	4263		

Table 10. Effects of ouring temperature on strength of a 76.5:6:17.5 mixture of dune sand, dolomitic monohydrate lime, and fly ash No. 3

Immersed un	confined compres	sive strength,
	psi	
3-day	7-day	28-day
0 52 7 <u>1</u> 7 1464 1997	0 145 1097 1622 2605	193 783 1755 2079 2947
	3-day 0 52 717	3-day 7-day 0 0 52 145 717 1097 1464 1622

The importance of high temperatures in the development of strength emphasizes the necessity for early summer construction when using lime-fly ash stabilization. The pavement courses will have time to cure for several weeks at temperatures high enough to aid in developing strength enough to withstand the adverse effects of winter freezing temperatures.

The strengths obtained for every temperature and curing period are in relation to the reactivity of the fly ash. Fly ash No. 3 is a good quality fly ash and the strengths obtained with it are in every case above those obtained with fly ashes Nos. 1 or 2. Fly ash No. 1 is considered of medium quality and generally performed better than fly ash No. 2,

considered of poor quality. The inherent strength production, or quality, of a fly ash shows up on the unconfined compressive strength of its mixes with lime for any temperature of curing. The methods of selecting a fly ash as standardized by ASTM or the Corps of Engineers include a variety of tests cumbersome and expensive to make, and some do not select a fly ash properly. The selection of a fly ash must be made on the basis of its reactivity with lime, except when, as in cement-concrete, a gradation of the fine material is very important.

Although these tests are not statistically enough, it appears that the quality of a fly ash is reflected in the strength values of its mixtures with lime at any temperature, and it is possible that a fly ash might be selected on the basis of a simple strength test, three days after molding the specimens.

For instance, a fly ash mixed with calcitic hydrated lime and dune sand in the proportions used here, should be a good quality fly ash if after three days it gives strengths of 3000 psi cured at 248°F, 1400 psi cured at 140°F, and 220 psi cured at 104°. More studies of this kind should be made in order to establish a criterion for use in the selection of satisfactory fly ashes by the simple method of determining its reactivity with lime for short curing periods at high temperatures.

Some investigators have used a short curing period at high temperature to predict the strength that may be expected after long curing periods at ambient temperatures. To check for possible relationships of this kind, the strength after 90 days curing at 70°F has been compared with the strength-curing time relationship (Figure 38). The results indicate that strengths equal to those obtained after 90 days curing at 70°F may be obtained.

- a) after 6 days curing at 104°F with fly ash No. 1 and calcitic lime
- b) after 19 days curing at 104°F with fly ash No. 2 and calcitic lime
- e) after 12 days curing at 104°F with fly ash No. 3 and calcitic lime
- d) after 7 days curing at 104°F with fly ash No. 3 and dolomitic lime.

The range is from 6 to 19 days with both limes and even with calcitic lime only. This points out the difficulty of predicting long-term strengths at ambient temperatures by finding short-term strengths at high temperatures. Curing the specimens at temperatures higher than 104°F will give a less realistic correlation because of the probable formation of compounds different from those formed at ambient temperatures.

Figure 38. Time relationships between strength obtained after 90 days curing at 70°F and the same strength when curing at 104°F.

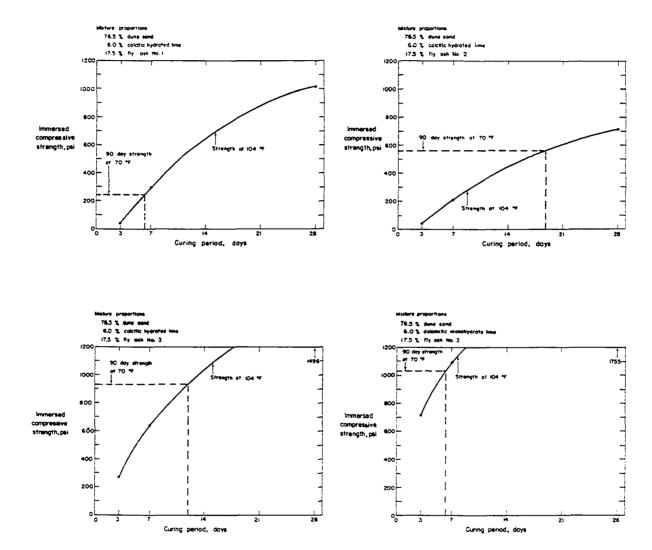


Table 19. Effects of high-temperature curing on specimens previously cured at lower temperatures

Mixture		rsed unconfined essive strength.
	•	pal
76.5% dune sand	7 days at 120°C	2342
6.0% calcatic hydrated line	28 days at 10°C + 7 days at 120°C 35 days at 10°C	21.04 40
r/•9% ith sight NO. I	28 days at 40°0 + 7 days at 1.20°0 35 days at 40°0	21.0 <i>4</i> 1079
	28 days at 60°C + 7 days at 1.20°C 35 days at 60°C	189 <i>5</i> 1336
76.5% dune sand	7 days at 120°0	1595
6.0% calcitic hydrated lime	28 days at 1000 + 7 days at 12000 35 days at 1000	191 <u>5</u>
at a No. or with 1400 or	28 days at 40°C + 7 days at 120°C 35 days at 40°C	1520 905
•	28 days at 60°C + 7 days at 120°C 35 days at 60°C	1204 1093

accelerated after the specimens have been cured for a lapse of time at a certain temperature by submitting them to higher temperatures. The lower the initial temperature of curing the higher the strength is boosted. Examples of this property are given in Table 19. These findings indicate that the strength of soil, lime, and fly ash mixtures may be increased at any time by submitting them to higher curing temperatures.

Steam Curing Soil Stabilized Mixtures

After the temperature curing studies were made, further investigation was made of the effect of steam curing on the strength of stabilized soil specimens.

In a recent report presented to the Highway Research Board (38) it was recommended that an additional 10 million dollars be spent exclusively in research on aggregates during the next four or five years. The same report suggested some research in the use of nuclear energy in highway construction. Based on the need for new sources of aggregates and the future use of nuclear energy, the study on steam curing of soil-lime-fly ash specimens was expanded to include soil-cement and soil-lime. This was done because of the concrete-like strengths obtained with soil, lime and fly ash

mixtures, and to gather information on the effects of steam curing on other kinds of soil stabilization.

This was not appreached as a systematic study since it is beyond the purpose of the lime, fly ash stabilization investigation.

Extensive research has been done on sand-lime bricks (23,27,29,43,57). These bricks are made by submitting the sand-lime paste to temperatures of 150-200°C (302-392°F) for about 8 hours in autoclaves with pressures from 5 to 10 atmospheres. The addition of clay has been tried, and about 10 percent clay has been found to increase the strength of sand-lime bricks (27,57,60). The treatment of cement concrete by steam is a well known process, and the curing of lime and fly ash mixtures at high temperatures has already been mentioned. A comparative study of the autoclaving of soil specimens stabilized with lime, cement, or lime, and fly ash at 248°F, 15 atm., was undertaken. The results, together with those obtained at 70°F are presented in Table 20.

Discussion

Soil specimens stabilized with lime and fly ash, lime, or cement may reach strengths of 1000 psi or higher by exposing them to high temperatures and steam.

A mixture of 76.5 percent sand, 6 percent calcitic hydrated lime and 17.5 percent fly ash No. 3, developed a

autoclave (248°F, 15 atm.). After 7 days, the strength was 3662 psi. These strengths are many times higher than those obtained at ambient temperatures. A great increase was also obtained with the same fly ash and different lime percentages mixed with friable loess. Mixtures of dune sand, lime and fly ash No. 1 or No. 2 also gave very good strengths after curing in the autoclave, although they are much lower than strengths obtained with fly ash No. 3.

Addition of 6 percent calcitic hydrated lime to friable loss gave a 24 hour strength of 1792 psi, with a subsequent increase for longer curing periods. Dolomitic lime gave strengths lower than calcitic lime, either used alone or with fly ash. Sand-lime mixes that have practically no strength at ordinary temperatures, reached 1030 psi after 3 days in the autoclave.

Cement treated soils also benefit from the accelerated curing at high temperature, but not to the extent of those treated with lime or lime-fly ash. Maximum strengths with cement were lower than with lime or lime-fly ash.

An examination of the results shows that:

1. High-temperature curing with a supply of moisture in the form of steam enhances the strength of soils stabilized with lime, lime-fly ash or cement.

Table 20. Comparison of strongths of soil stabilized mixtures cured at 248°F and 70°F

Materials and proportions	Immersed unconfined compressive strength after steam-curing at 2480F		
	l day	3 days	7 days
Sand + 8% calc. lime + 8% cement + 6% calc. lime + 17.5% F.A. + 6% calc. lime + 17.5% F.A. + 6% calc. lime + 17.5% F.A. + 6% dolo. lime + 17.5% F.A.	#2 1087 #3 2548	1783	ND ⁸ 1162 2342 1595 3662 ND
Loess + 3% calc. lime + 3% dolo. lime + 3% cement + 6% calc. lime + 6% dolo. lime + 6% cement + 9% calc. lime + 17.5% F.A. + 6% calc. lime + 17.5% F.A.	630 254 366 1792 1396 955 1441 1344 1140 #3 1780	654 271 420 1977 1630 1084 1820 1524 1425 1624 1969	ND ND ND ND 2118 1561 1244 ND ND ND ND ND
Alluvial + 9% calc. lime + 9% dolo. lime + 3% calc. lime - 6% cement	921 613 717	969 597 715	1054 ND 711
Jumbotil + 9% calc. lime	1188	1318	1350

a Not determined.

Table 20. (Continued)

b Dolomitic monohydrate lime used.

Table 20. (Continued)

Materials and proportions	Immersed unconfined compressive strength after moist-curing at 70°F		
	7 days	28 days	90 days
Sand + 8% calc. lime + 8% cement + 6% calc. lime + 17.5% F.A. + 6% calc. lime + 17.5% F.A. + 6% calc. lime + 17.5% F.A. + 6% dolo. lime + 17.5% F.A.	5 398 #1 55 #2 0 #3 165 #3 145	20 474 90 150 390 783	30 541 240 560 930 1030
Loess + 3% calc. lime + 3% dolo. lime + 3% cement + 6% calc. lime + 6% delo. lime + 6% cement + 9% calc. lime + 9% dolo. lime + 9% dolo. lime + 9% calc. lime + 9% calc. lime + 17.5% F.A. + 6% calc. lime + 17.5% F.A. + 9% calc. lime + 17.5% F.A.	#3 142	110 249 ND 105 354 495 158 400 566 226 225 203	287 234 ND 403 584 715 499 621 1001 ND 655
Alluvial + 9% calc. lime + 9% dolo. lime + 3% calc. lime _ 6% cement	109 173 328 ^b	166 345 469b	218 336 501 ^b
Gumbotil + 9% calc. lime	125	215	386

² Not determined.

b Dolomitic monohydrate lime used.

- 2. The strength increases with length of curing, from which it is deducted that the strengths might be boosted to higher values by curing at higher temperatures than the one used here (248°F).
- 3. Compacted mixtures of soil, calcitic hydrated lime, and high quality fly ash develop concrete-like strengths after a few hours of steam curing.
- 4. Lime-fly ash gave best strengths followed by calcitic lime, dolomitic lime and cement in this order; although sand-lime mixes should be regarded as a special case requiring higher temperatures than those used here. Calcitic lime ranks better than dolomitic in steam cured soil, lime, and fly ash mixtures.

It is anticipated that the results shown by these experiments may have an impact in the future development of the technique of soil stabilization. The recommendations made to the Highway Research Board to promote research to study the applications of nuclear power in road construction are reinforced by the results reported herein. The development of a machine able to heat economically a 4 to 6 inch layer of compacted stabilized soil to temperatures in the range of 212 to 5720F (100 to 300°C) could revolutionize the practice of soil stabilization. If the application of heat to road courses is feasible, further work may determine

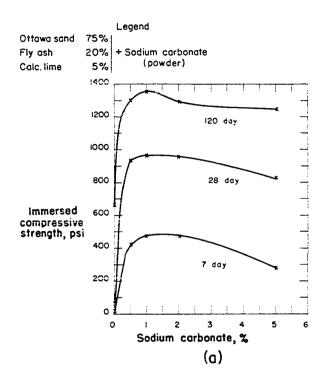
such details as the amount of stabilizer to use with each soil, the time and temperature of application as related to the heat conductivity of soils and to the strength desired, feasibility of the use of steam, etc.

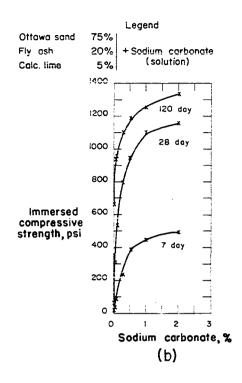
Preliminary Survey of Chemical Additives to Mixtures of Lime and Fly Ash

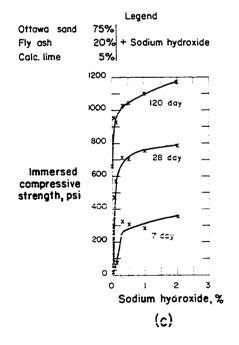
The preliminary survey was made using twelve chemicals in varying amounts to determine the minimum amount of each required for substantial improvement of the lime-fly ash reaction and to serve as the basis for selecting a smaller number of chemicals for more detailed studies. Ottawa sand was used as the soil component because its gradation and monomineralic composition, silica, may make it behave as an inert material at the curing temperatures used, thus minimizing the effect of the soil component on the lime-fly ash reaction. A calcitic hydrated lime was chosen because, although of reagent grade, it was representative of a great amount of commercial limes produced in the U.S. A medium quality fly ash from the Midwest (St. Clair Power Plant) was used as the pozzolan component. The Ottawa sand, lime, fly ash mix proportions were 75 percent, 5 percent, 20 percent, respectively, near optimum for these materials.

Specimens were melded at optimum medatume for strength.

Any or certain amounts of all the chemicals used increased the strength of the Ottawa sand lime, and fly ash mixture. Following is an analysis of each chemical evaluated.


Sodium carbonate


Even the smallest amount of sodium carbonate tried, 0.05 percent, increased the strength substantially. Seven and 28 day strengths were increased over thirty times with amounts of chemical greater than 0.5 percent. Some differences in strength are shown between the use of sodium carbonate in powder form or in liquid solution, but the great increase in strength warrants the use of the chemical in either form. The optimum amount is about 1.0 percent when used in powder form. The commercial price of this product, 35 to 65 dollars a ton, makes it a promising additive for lime-fly ash stabilization.


Sodium hydroxide

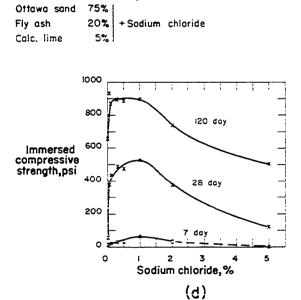
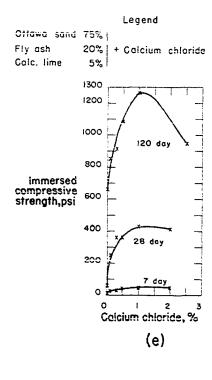
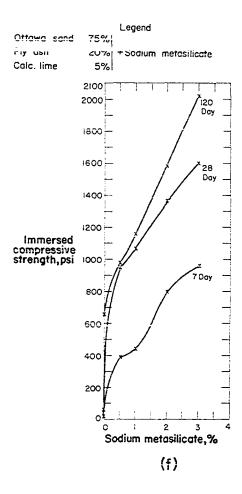
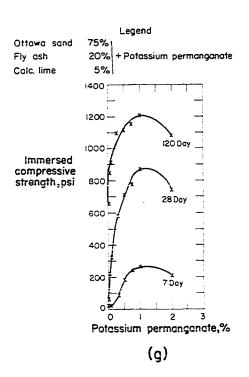

This chemical is also very effective. A noticeable improvement of strength started with amounts of sodium hydroxide as low as 0.03 percent. A recommended amount is about 1.0 percent. This chemical, priced at about 100 dollars a ton, may also be an economical activator of the pozzolanic reaction.

Figure 39. (a,b,c,d). Effect of amount of chemical additive on strength of 75:5:20 Ottawa sand, calcitic hydrated lime, and fly ash No. 1 mixture.







Legend

Figure 39. (e,f,g,h). Effect of amount of chemical additive on strength of 75:5:20 Ottawa sand, calcitic hydrated lime, fly ash No. 1 mixture.

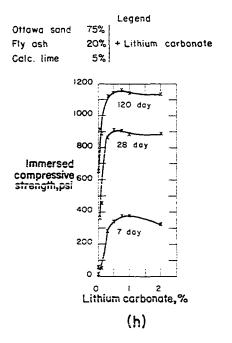
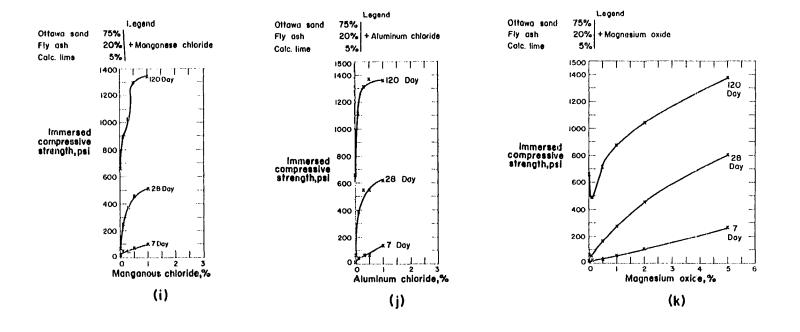
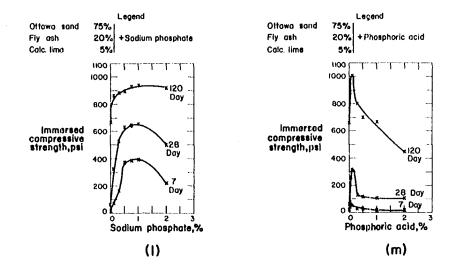




Figure 39. (i,j,k,l,m). Effect of amount of chemical additive on strength of 75:5:20 Ottawa sand, calcitic hydrated lime and fly ash No. 1 mixture.

objected mutofoo bee objected mutbol

The effects of these two additives are somewhat parallel. They gave little improvement to 7 day strength, but gave a substantial increase to 28 day and 4 month strengths even with small concentrations of chemical. The price difference, 20 dollars a ton for sodium chloride and 60 for calcium chloride, and the small amounts of sodium chloride required for a maximum increase in strength, makes sodium chloride the choice when improvement of long-term strengths is the main interest. Three-tenths of a percent of sodium chloride increased the 28 day strength by about ten times, and the optimum amount was about 1.0 percent.

Sodium metasilicate

This chemical increased the strength greatly, even in small amounts. The strength increase was more or less proportional to amount used; the optimum was above 3.0 percent. The strength of 1,000 psi was found after 7 days curing with the largest amount of sodium metasilicate tested, 3.0 percent. The commercial price of this chemical is about 120 dollars a ton on a dry basis, which makes it a promising chemical additive when used in small amounts.

aluminum chloride and sodium phosphate

These chemicals increase strengths, but the rate of increase, amounts required, and economical considerations make them less desirable.

Phosphoric acid

Although very small amounts of phosphoric acid improved soil strength, concentrations larger than 0.03 percent caused a decrease in strength. Its use is therefore not recommended.

Magnesium oxide

One of the components of dolomitic monohydrate (Type N) lime is magnesium oxide; consequently the effects on strength caused by addition of this chemical should give an indication on the effects of using dolomitic monohydrate lime instead of calcitic hydrated in lime-fly ash stabilization.

Small amounts, up to 0.5 percent, resulted in a slight decrease of strength, but increased amounts up to the large-st amount tried, 5.0 percent, increased the strength (Figure 39, k). The results indicate that dolomitic monohydrate limes are more effective with the fly ash used here, but they are not as effective as calcitic hydrated lime plus treatment with some of the other chemical additives. The results also warranted an investigation on the effects of

chemical additives to dolomitic lime and fly ash mixtures.

Extended Evaluation of Chemical Additives

To complement the tests made with Ottawa sand, the study was extended to include four natural soils: a dune sand, a friable loess, an alluvial clay and a gumbotil (Tables 1 and 2).

The evaluation of magnesium oxide indicated that dolomitic monohydrate lime might be more effective than calcitic
hydrated lime, and that the use of dolomitic lime might
make unnecessary the addition of chemicals; therefore the
use of both limes, calcitic hydrated and dolomitic monohydrate, was evaluated. Commercial type limes were used.

Three fly ashes were selected to include such desired variations in their properties as coarseness, carbon content, specific surface, etc.

From the preliminary studies, four chemicals warranted further evaluation based on strength improvement and economics: sodium carbonate, sodium hydroxide, sodium metasilicate and sodium chloride.

The proportions of soil, lime, and fly ash used were 76.5 percent, 6 percent and 17.5 percent. The amount of chemical used was 1.0 percent in mixtures prepared with all soils, limes, and fly ashes, except that 0.5 percent was also used with dune sand and fly ash No. 1. The evaluation

ash-chemical stabilization of soils with other methods of soil stabilization, but rather to be a check on the possible beneficial effects of the selected chemicals on soil, lime, and fly ash mixtures. Therefore, the mixture proportions are within the range commonly recommended for lime-fly ash stabilization, and the amount of chemical added is probably near the optimum amount, except for sodium metasilicate.

The molding moisture content for mixtures was deducted from the moisture-density and moisture-strength curves of soil, lime, and fly ash mixtures without chemical additives. With friable loess, maximum density and maximum strength occurred at the same moisture content, and this was considered the optimum. The moisture requirements for maximum density and maximum strength of mixtures with dand were not the same, and as the moisture content for maximum density gave very low strengths, the moisture content for maximum strength was used as the optimum. The molding moisture to get maximum strengths of mixtures with alluvial clay and gumbotil was about two percent above the optimum for maximum density.

Dune sand

The data of tests made with this soil and combinations of calcitic hydrated or dolomitic monohydrate lime and fly

ashes Nos. 1, 2 and 3 are plotted as bar graphs in Figures 40 through 43.

Sodium carbonate, sodium metasilicate and sodium hydroxide in amounts of 1.0 percent increased 7, 28 and 90 day strengths of all dune sand-lime-fly ash mixtures considerably. Sodium chloride increased 28 and 90 day strengths of dune sand, calcitic lime, and fly ash mixtures to a great extent and also increased substantially the 90 day strength of dune sand, dolomitic lime, and fly ash mixtures except those made with fly ash No. 2, in which the strength increase was quite small.

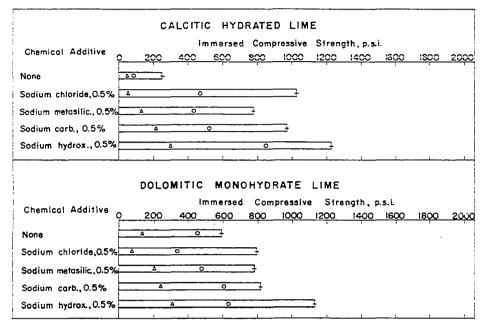
The strengths obtained using 0.5 percent chemical in mixtures with fly ash No. 1 are smaller than those obtained with 1.0 percent chemical additive, but the strength increases follow the same trend for both amounts.

Friable loess

All four chemicals increased the strength of loess, calcitic lime, and fly ash mixtures except for 90 day strength of specimens made with sodium metasilicate and fly ash No. 2 (Figures 44 through 46). Loess, dolomitic lime, and fly ash mixtures were not appreciably benefited by the addition of the chemicals.

The use of sodium chloride, sodium carbonate or sodium hydroxide in mixtures of friable loess, calcitic hydrated

Figure 40. Effect of 0.5 percent chemical additive on strength of a 76.5:6:17.5 mixture of dune sand, lime, and fly ash No. 1.


Figure 41. Effect of 1.0 percent chemical additive on strength of a 76.5:6:17.5 mixture of dune sand, lime, and fly ash No. 1.

Mixture Proportions

76.5 % dune sand 6.0 % lime 17.5 % fly ash No.1 A 7 day curing

a 28 day curina

÷ 90 day curing

Mixture Proportions

76.5 % dune sand 6.0 % lime 17.5 % fly ash No.1 ■ 7 day curing

o 28 day curing

+ 90 day curing

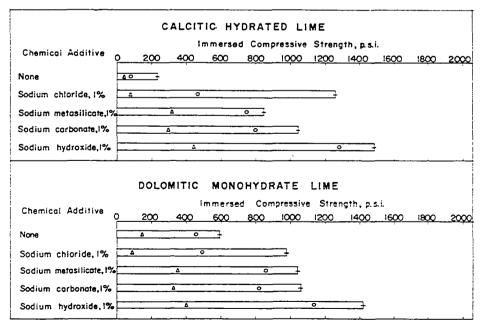
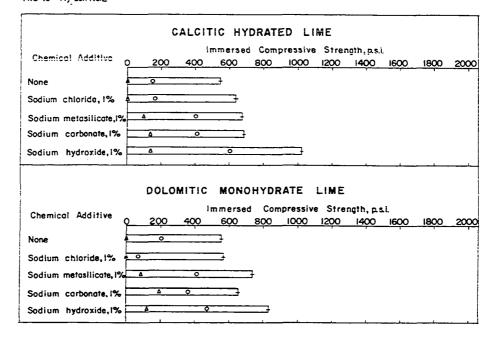



Figure 42. Effect of 1.0 percent chemical additive on strength of a 76.5:6:17.5 mixture of dune sand, lime, and fly ash No. 2.

Figure 43. Effect of 1.0 percent chemical additive on strength of a 76.5:6:17.5 mixture of dune sand, lime, and fly ash No. 3.

Mixture Proportions 76.5 % dune sand 6.0 % lime 17.5 % fly ash No.2

- 4 7 day curing
- = 20 day caring
- + 90 day curing

Mixture Proportions

76.5 % dune sand 6.0% lime 17.5% flyash No.3

- △ 7 day curing
- o 28 day curing
- + 90 day curing

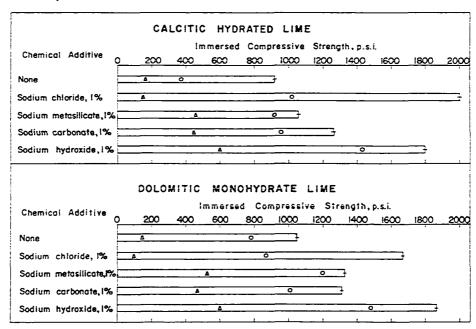


Figure 44. Effect of 1.0 percent chemical additive on strength of a 76.5:6:17.5 mixture of friable losss, lime, and fly ash No. 1.

Figure 45. Effect of 1.0 percent chemical additive on strength of a 76.5:6:17.5 mixture of friable loss, lime, and fly ash No. 2.

4 7 day curing Mixture Proportions 76.5 % frighte topes 0 20 400 50000 6.0 % lime + 90 day curing 17.5 % fly ash Na.1 CALCITIC HYDRATED LIME immersed Compressive Strength, p.s.i. Chemical Additive 200 400 600 800 1000 1200 1400 1600 1800 2000 None Δ0 Sodium chloride, 1% Sodium metasilicate,1% Sodium carbonate, 1% Sodium hydroxide, 1% DOLOMITIC MONOHYDRATE LIME Immersed Compressive Strength, p.s.i. Chemical Additive 200 400 600 800 1000 1200 1400 1600 1800 2000 None _____ Sodium chloride, 1% Δ 0 Sodium metasilicate1% A 0 + Sodium carbonate, 1% Sodium hydroxide, 1% Mixture Proportions 4 7 day curing 76.5 % friable loess o 28 day curing 6.0 % lime ÷ 90 day curing 17.5 % fly osh No.2 CALCITIC HYDRATED LIME Immersed Compressive Strength, p.s.i. Chemicai Additive 200 400 600 800 1000 1200 1400 1600 1800 2000 Sodium chioride, 1% -Sodium metasilicate,1% Sodium carbonate, 1% Sodium hydroxide, 1% [DOLOMITIC MONOHYDRATE LIME immersed Compressive Strength, p.s.i. Chemical Additive O 200 400 600 800 1000 1200 1400 1600 1800 2000 None ۰ Sodium chloride, 1%

٠ ٥

-0

Δ 0 +

Sodium metasilicate, 1%

Sodium carbonate, 1%

Socium hydroxide, 1%

Figure 46. Effect of 1.0 percent chemical additive on strength of a 76.5:6:17.5 mixture of friable loess, lime, and fly ash No. 3.

Mixture Proportions 76.5% friable loess 6.0% lime 17.5% fly ash No.3

- △ 7 day curing
- o 28 day curing
- ÷ 90 day curing

	C	CALCI	LIC H.	YDRAT	ED L	ME				
		1	mmerse	d Com	pressiv	e Strer	ngth, p.s	i.i.		
Chemical Additive	200	400	<u>600</u>	800	1000	1200	1400	1600	1800	2000
None	ΑO									
Sodium chloride, 1%	Δ									
Sodium metasilicate,!%		۵								
Sodium carbonate,1%		Δ		0		<u> </u>			-	•
Sodium hydroxide, 1%	1				0					
				,						
										
	DOL	OMIT	IC MO	Nohyi	DRATE	LIME	:			
Charles Addition	DOL		IC MO					ısı		
Chemical Additive	DOL 200		-		pressiv				1800	2000
Chemical Additive O		1	mmerse 600	d Com	pressiv	re Stre	ingth, p		1800	2000
<u></u>	200	400	mmerse 600	d Com	pressiv	re Stre	ingth, p		1800	2000
None	200	400	mmerse 600	d Com 800	pressiv	re Stre	ingth, p		1800	2000
None Sodium chloride, 1%	200	400	mmerse 600	d Com 800	pressiv	re Stre	ingth, p		1800	2000

lime and fly ash No. 1 or No. 3 could be recommended. The strengths produced by the addition of these chemicals in mixtures containing calcitic hydrated lime surpassed that of the similarly proportioned mixtures containing dolomitic monohydrate lime, with or without chemicals.

Alluvial clay and gumbotil

The effect of chemical additives on these clayey soils stabilized with lime and fly ash was nil and sometimes detrimental; consequently the results are not graphed. Specimens treated with sodium carbonate, sodium hydroxide or sodium metasilicate and cured for 90 days were so weakened during the 24 hour immersion period that strength testing was impossible, or strengths were much lower than the strengths of specimens made without treatment or with sodium chloride as the additive. Sodium carbonate, sodium hydroxide and sodium metasilicate are therefore not recommended for use as additives to montmorillonitic clay soils stabilized with lime and fly ash. Sodium chloride was neither harmful nor beneficial; so there appears no reason to use it as an additive.

Sodium carbonate

This chemical was very effective in the improvement of 7 and 28 day strengths of sandy soil, lime, and fly ash mixtures, regardless of the kind of hydrated lime used.

Ninety day strengths were also benefited, but to a lesser extent. Sodium carbonate also improved the early strength of friable losss, lime, and fly ash mixtures containing calcitic hydrated lime, but it did not improve the early strength of mixtures containing dolomitic monohydrate lime.

Owing to its relatively low cost, sodium carbonate in amounts of 0.5 to 1.0 percent is a most promising additive for sandy soils stabilized with lime and fly ash.

Neither rodium carbonate, nor sodium hydroxide or sodium metasilicate, are recommended as additives to montmorillonitic clay soil, lime, and fly ash mixtures because they reduce the long-term immersed strength, and do not affect early strength.

Sodium hydroxide

This chemical greatly improved the strength of sand and friable loss stabilized with hydrated lime and fly ash. The overall effectiveness was greater with calcitic hydrated lime than with dolomitic monohydrate lime. As an example of the strength increases possible, dune sand stabilized with calcitic hydrated lime and fly ash No. 1 showed the following strength improvements by the addition of 1.0 percent of sodium hydroxide:

<u>period</u>	mixture	Treated with 1.0% NaOh	Increase	
7 days	42 ps1	443 psi	10.5 times	
28 days	74 ps1	1,291 psi	17.4 times	
90 days	241 psi	1,493 psi	6.2 times	

Its use is therefore recommended with these types of soils.

Sodium chloride

This chemical used as an additive increased the 90 day strength of dune sand, lime, and fly ash mixtures, in some to a considerable extent. Seven day strength was slightly reduced, and 28 day strength was sometimes greatly improved and sometimes was reduced. All 90 day strengths were increased by the addition of sodium chloride. The same trends were observed in mixtures with friable losss as a soil. Thus sodium chloride may be a promising additive to friable soils stabilized with lime and fly ash when long-term strengths are desired. The strength of mentmorillonitic clay soil, lime, and fly ash mixtures was not affected by adding sodium chloride.

Sodium metasilicate

Sodium metasilicate in the amount of 1.0 percent increased the strength of the dune sand, lime, and fly ash mixtures. It can also improve friable loss, lime, and fly ash mixtures containing some fly ashes. For the percentage used, this chemical rates lower than sodium earbonate or

greatly the strength of friable soils; they were not tried here for economic reasons.

Calcitic hydrated and dolomitic monohydrate limes

The delomitic monohydrate lime used produced better strengths than the calcitic hydrated lime when the mixtures were not treated with chemicals. However, the calcitic lime mixture responded better to chemical treatments.

Effects of Additives at Low Curing Temperatures

The strengths obtained with lime and fly ash mixtures depend greatly on curing temperatures. When soils are stabilized with lime and fly ash in the late part of the summer in temperate climates, they may not develop sufficient strength to withstand the imposed stresses of the colder seasons. This may lead to failure of the pavement.

The effect of chemical additives at low temperatures was investigated. Dune sand and fly ash No. 1 were used with both calcitic hydrated and dolomitic monohydrate limes. The curing temperature was 43 ± 1 °F. Results for 7 and 28 day strengths are given in Figure 47.

Calcitic lime

The mixture of dune sand, calcitic hydrated lime and fly ash No. 1 without additive, cured for ? days, failed

during the period of immersion in water. The same happened with the mixture with 1.0 percent sodium chloride as additive. Additions of 1.0 percent sodium metasilicate, sodium carbonate or sodium hydroxide, however, gave strengths of about 100 psi.

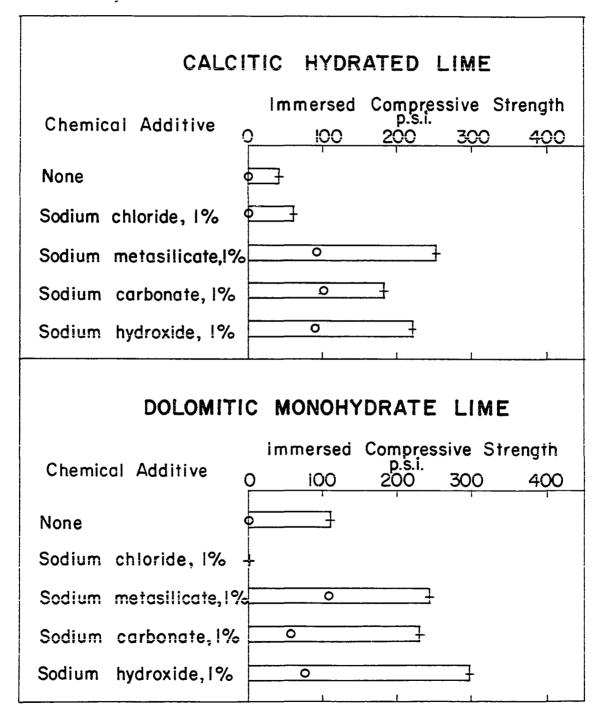
After 28 days curing, the mixture without additive showed some immersed strength, 41 psi. This strength was increased five or sixfold by additions of 1.0 percent sodium metasilicate, sodium carbonate or sodium hydroxide. Sodium chloride produced a slight strength improvement.

Dolomitic lime

The untreated dune sand, dolomitic lime, and fly ash mixture did not show any immersed strength after 7 days curing. Additions of 1.0 percent sodium metasilicate gave a strength of 107 psi; 1.0 percent sodium carbonate gave 57 psi; and 1.0 percent sodium hydroxide gave 76 psi. Sodium chloride was not beneficial.

After 28 days, the untreated mixture had a strength of lll psi. Additions of 1.0 percent sodium metasilicate or sodium carbonate more than doubled the strength. One percent sodium hydroxide increased the strength almost three times, to 298 psi. Specimens with sodium chloride did not show any immersed strength.

Figure 47. Effect of 1.0 percent chemical additives on strength of a 76.5:6:17.5 mixture of dune sand, lime, and fly ash No. 1 cured at a temperature of 43°F.


 $\langle \cdot \rangle_{C}$

Mixture Proportions

o 7 day curing

76.5% dune sand 6.0% lime 17.5% fly ash No.1

+ 28 day curing

Picouccion

The beneficial effects of some additives to the limefly ash pozzolanic reaction are very important when low temperatures are expected during the curing period. Addition of promising chemicals may lengthen the working season for stabilization of soils with lime and fly ash.

The strengths obtained with dune sand, lime, and fly ash No. 1 mixtures cured at 43 \(\preceq 1\) of may be from 200 to 300 psi by the addition of a small amount of sodium metasilicate, sodium carbonate or sodium hydroxide. Those strengths may be sufficient in a base course to withstand the adverse effects of traffic and lower winter temperatures. Untreated sand, lime, and fly ash No. 1 mixtures after 28 days curing showed strengths of 100 psi or less, which are insufficient for a base course. The same beneficial effects may be expected with other fly ashes. Sand, lime, and fly ash mixtures made with either calcitic hydrated or dolomitic monohydrate lime increased in strength by the addition of sodium metasilicate, sodium carbonate or sodium hydroxide, but the data obtained herein were not sufficient to indicate which lime is more beneficial.

The chemical additives, as salts, also assist by lowering the freezing point of the free water in stabilized soil mixtures. By depressing the temperature at which the free soil water freezes, more time is allowed to gain

etrongth; and the stabilized soil is exposed for shorter periods to the damaging effects caused by ice formation.

Mechanism of Chemical Additives in Lime, and Fly Ash Mixtures

A complete evaluation of the mechanism of the effects of chemical additives in lime and fly ash mixtures must involve extensive chemical analysis. Based on the strength data and on the assumption that strength is indicative of the extent of the pozzolanic reaction, an explanation of the mechanism is given herein.

The effects of chemical additives on lime and fly ash may be due to one or more of the three following:

- 1. Speeding up of the pozzolanic reaction;
- 2. Production of secondary cementitious products; and
- 3. Combination with the primary, or pozzolanic, cementitious products.

The first should probably be of a catalitic nature.

It may show up particularly in the curve for 7 day strength versus additive content, with a sharp increase in strength for small amounts of chemical added.

In the second, the chemicals combine or react with lime to form cementitious products like $CaCO_3$, $Ca(PO_4)_2$, $Al(OH)_3$, etc.

In the third are included those chemicals that may combine or react with the pozzolanic cement produced, with

the pozzolanio materials in fly ash or with the soil. This combination or reaction may be a complex one producing better cementitious materials or speeding up the reaction or be a reaction that activates some of the materials, increasing their pozzolanic value.

For a separate evaluation of the different chemicals, they may be grouped on the basis of their reactions - basic, neutral or acidic. Bases and basic salts, also known as alkalies and alkaline salts, produce hydroxyl ions in water solution to varying extents. Acid salts produce hydrogen ions in water solutions to varying extents. Neutral salts in water solution do not upset the natural balance of hydrogen and hydroxyl ions. Another group is formed with phospheric acid, and magnesium oxide is in a miscellaneous group.

This evaluation is made based on the results obtained with mixtures with Ottawa sand as a soil in this and in a previous investigation (18,50). The characteristics of this sand make it, supposedly, an inert material in the lime-fly ash or lime-fly ash-chemical reactions.

Bases and basic salts

Alkaline additives increase the amount of available hydroxyl ions in the moistened Ottawa sand-lime-fly ash system. As a result the pozzolanic reaction may be accel-

caused by the alkalinity (30).

The base, sodium hydroxide, acts as a catalyst supposedly in the following way:

- a) It first reacts with the siliceous material to produce intermediate sodium silicates;
- b) The over-all reaction goes to completion when the intermediate sodium silicates subsequently react with lime
 (calcium hydroxide) to form sodium hydroxide and cementitious
 insoluble calcium silicates;
- c) The sodium hydroxide is then free for further reaction with unreacted siliceous material.

In the alkaline salts, sodium carbonate very likely reacts with lime in the moist Ottawa sand, lime, and fly ash mixture to form calcium carbonate and sodium hydroxide in the following way,

 ${\rm Na_2CO_3} + {\rm Ca(OH)_2} \longrightarrow {\rm CaCO_3} + {\rm 2NaOH}$ The precipitated calcium carbonate contributes cementation to the system, and, as hypothesized in the preceeding paragraph, the sodium hydroxide acts as a catalyst.

The other alkaline salts used, sodium phosphate, sodium metasilicate and lithium carbonate, may act similarly to sodium carbonate. Sodium phosphate reacts with lime to form calcium phosphate, which may be cementitious, and sodium hydroxide, which acts as a catalyst. Sodium metasilicate

forms highly comentitions calcium silicates with lime and releases also sodium hydroxide. Lithium carbonate reacts with lime and precipitates calcium carbonate releasing lithium hydroxide, an alkali that produces the same catalitic effects as sodium hydroxide in the lime-fly ash reaction.

Acid salts

Acid salts undergo a hydrolysis reaction with the precipitation of weak bases (hydroxides). With calcium hydroxide (lime) and aluminum chloride this reaction proceeds as follows:

 $2AlCl_3 + 3Ca(OH)_2 \longrightarrow 2Al(OH)_3 + 3CaCl_2$ The weak base formed, $Al(OH)_3$, has some cementing properties that may be beneficial. The clacium chloride formed may also benefit through complex effects of the third category.

With calcium chloride, the principal long-term strength benefits obtained are thought due to a different type of chemical mechanism than discussed above, and that are included in the third category of effects. Salcium chloride being highly hygroscopic and deliquescent ensures a relatively high concentration of calcium ions over a long period of time by providing moisture for a solution. Since lime has a low solubility and a lower ionization constant than calcium chloride, the concentration of calcium ions from lime is lower than that from calcium chloride.

The other acid salt used: manganese chloride: probably produces effects analogous to those of calcium chloride.

Neutral salts

Sodium chloride, although a neutral salt, may act as does calcium chloride; but it gives less benefit to long-term strength, perhaps because sodium chloride is less hygroscopic and deliquescent than calcium chloride.

The mechanism of the action of potassium permanganate in lime and fly ash mixtures is also included in the third category. Potassium permanganate, a strong oxidizing agent, may oxidize the carbon in the fly ash with subsequent production of potassium carbonate and the precipitation of manganese dioxide. The potassium carbonate formed may then give rise to further reactions, of the first and second category, similar to those of sodium carbonate, previously discussed, which are beneficial to strength. Potassium permanganate may also clean the surface of fly ash by oxidation of possible organic matter. This may make the fly ash more reactive with lime.

<u>Acid</u>

Very small amounts of phosphoric acid somewhat improved the strength. This may be brought about by the formation of complex calcium phosphates or by the activation of fly ash (1,25). Increased amounts of acid caused a decrease in strength, due to the neutralization caused by the acid which reduced the alkalinity and subsequently the silica release.

Miscellaneous chemical

Magnesium oxide is supposed to react with lime and fly ash producing effects of the third category. It may enter into the pozzolanic reaction and form complex silicates of calcium and magnesium. The effectiveness of magnesium oxide, a component of dolomitic monohydrate lime, in calcium hydroxide and fly ash mixtures corresponds with the findings of previous research which indicated that dolomitic monohydrate lime gives better strengths than calcitic hydrated lime in soil, lime and fly ash mixtures cured at ambient temperatures.

Chemical additives in soil, lime, and fly ash mixtures

Four chemicals were evaluated with soils; sodium carbonate, sodium hydroxide, sodium metasilicate and sodium chloride. The greater benefits were obtained with the sandy soil; and the benefits decreased with the increase in the amount of clay in the soil.

With the available data it is difficult to evaluate the influence of the soil factor in soil, lime, fly ash, and chemical mixtures. The chemical additives used were beneficial in mixtures with friable soils and detrimental in

strength in the clayey soils is likely brought about by the excess of sodium ions and high alkalinity in the pore fluid of the soil, lime and fly ash mixtures. Both factors introduce disruptive forces in the clay structures that are not overcome by the cementitious bond of the pozzolanic reaction.

Modification of Fly Ashes

The processing of fly ash to broaden its use or to improve its qualities has not been extensively tried. In the manufacture of lightweight aggregate, a fly ash is sintered by a process developed at the Building Research Station, Garston, England (61,5). By the sintering process spherical particles 1/8 to 1/2 inch in size are made. This is carried out at a temperature sufficient to cause the particles to adhere but not to fuse. The spherical uncompacted pellets produced contain about 40 percent voids with a density of about 42 pcf.

Some work is now being done on the modification of fly ash by grinding. The results of this work show that it is possible to improve some of the properties of a fly ash, such as specific surface and specific gravity, strength of

^{*} Walter N. Handy, Inc. P.O. Box 549, Evanston, Illinois. Information on screening and pulverization of fly ashes. Private communication. September 8, 1960.

mortars with lime. etc.

The reaction between lime and fly ash is apparently a surface reaction, as the reactivity of a fly ash with lime is closely related to fineness and specific surface. It was supposed that by grinding or by scalping the coarse fraction, a fly ash might be improved for its use in soil stabilization. Consequently two low quality fly ashes, Nos. 2 and 4, were selected to be processed and used with dune sand and calcitic hydrated or dolomitic monohydrate lime.

The proportions used were 76.5 percent dune sand, 6 percent lime and 17.5 percent fly ash. The mixtures were run at several water contents and the maximum results are recorded (Tables 21 and 22).

Table 21. Comparative results obtained by the modification of the fly ash of a 76.5:6:17.5 mixture of dune sand, calcitic hydrated lime, and fly ash No. 2

Process of fly ash	Maximum dry density	confine	d compr	e s sive
	density pcf	7 day	28 day	90 day
As it is (unprocessed)	112	0	158	55 ⁴
Ground to pass the #270 sieve	116	9	203	631
Discarded coarser than #270 s.	ieve 118	0	175	633

Table 22. Comparative results obtained by the medification of the fly ash of a 76.5:6:17.5 mixture of dune sand, dolomitic monohydrate lime, and fly ash No. 4

·	Maximum dry	Maximum immersed un- confined compressive strength, psi			
	density pef	, 7 day	28 da y	90 day	
As it is (unprocessed)	105	91	309	650	
Ground to pass the #200 sieve	110.5	116	408	700	
Discarded coarser than #200 siev	re 126.5	103	506	892	

Fly ash No. 2

This fly ash, with a 7.2 percent carbon content, was selected because it did not show any strength after 7 days curing for any combination of sand, lime and fly ash. The results show that neither grinding it to pass a #270 sieve nor the use of only the fraction passing the #270 sieve gave any improvements in 7 day strengths. For 28 and 90 days curing periods, the mixtures with the processed fly ash showed an increase in strength over the unprocessed, but this increase does not warrant the cost of processing this fly ash.

Flv agh No. L

This fly ash was chosen because it has a very high content of carbon, 18.6 percent. A different lime, dolomitic monohydrate, was used with this fly ash, and the #200 was used as a selector sieve instead of the #270.

By grinding the coarse part to pass the #200 sieve there is a slight increase in strength. Discarding the material retained in the #200 sieve, the strength is increased 64 percent after 28 days curing and 40 percent after 90 days. The processing of this high-carbon fly ash may then be economical.

Discussion

The density of sand, lime, and fly ash mixtures increased greatly when the fly ash was modified by grinding or by scalping the coarse fraction. This increase in density is caused by an improvement in the gradation of the fly ash or by breaking down hollow spheres present in any fly ash. An increase in strength is brought about by the increase in density and through a closer contact and/or more contact points between the lime and fly ash. Using a finer fly ash there will be more surface area available for the pozzolanic reaction to take place, which also brings an increase in strength. It is apparent that the increase in strength was partly a contribution of the higher densities and of the

greater surface area of the modified fly ashes.

A fly ash of high carbon content may be beneficially processed by sieving. The coarse material will contain most of the carbon, which is not reactive with lime and can be reused as a fuel. The fine material will be more reactive with lime and be used in soil stabilization or as a pozzolan in concrete.

The above tests show an opening to improve the quality of fly ashes by grinding and/or sieving, which will broaden their use as a construction material.

Lime Stabilization

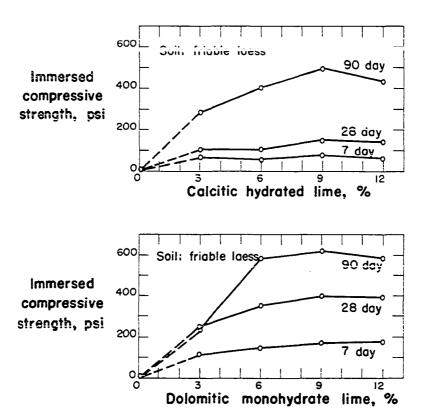
It has been found in this investigation that the lime stabilization of some soils may sometimes not be appreciably benefited by the addition of fly ash. To obtain data to evaluate the use of lime or lime and fly ash, an extensive study of lime stabilization was made. Maximum strength up to 90 days were recorded, and up to 25 percent of lime was used. (Tables 23 to 26, and Figures 48 to 50).

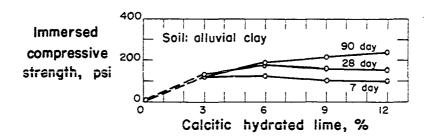
Presentation and discussion of results

<u>Dune sand.</u> Though sandy soils do not benefit by the addition of small amounts of lime, it was suspected that large percentages of lime might impart some strength.

Therefore quantities of lime up to 25 percent were studied

in mixtures with dune sand. The test results are given in Table 23.


The large quantities of lime strengthened the dune sand; for instance a mixture of 25 percent dolomitic monohydrate lime and 75 percent sand, had 7 and 28 day strengths of 112 and 215 psi respectively. But the additions of such a great amount of lime is not economical. It was also observed that dolomitic monohydrate lime produced much higher strengths than calcitic hydrated lime. The strengths obtained with lime may be greatly increased by the addition of a fly ash.


The added strength obtained by the addition of lime to sandy soils probably comes mainly from carbonation of the lime. But part of the strength may have been caused by the formation of calcium silicates, although this is not likely to have occurred at the curing temperatures used in this research.

Friable loess. This soil shows a great pozzolanic activity with lime. It has been pointed out in another section, that based on 7 and 28 day curing periods the addition of some fly ashes actually diminishes the strength obtained with this soil and lime only, but the pozzolanic action between loess and lime continues and is important beyond 28 days (Figure 48). Very small amounts of lime are needed to develop the full strength that may be obtained by addition of lime. Six percent of dolomitic monohydrate lime

Figure 48. Strengths obtained by additions of different amounts and kinds of lime to friable loess.

Figure 49. Strengths obtained by additions of different amounts and kinds of lime to alluvial clay.

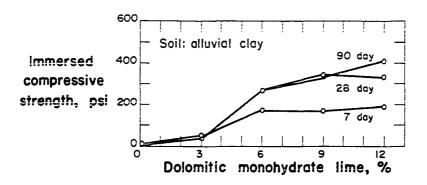


Figure 50. Strengths obtained by additions of different amounts and kinds of lime to gumbotil.

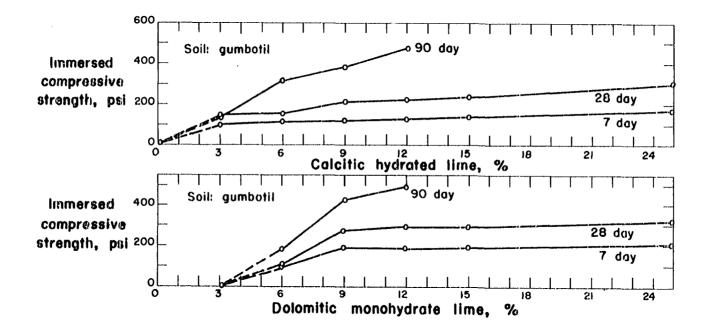


Table 23. Strengths of dune sand stabilized with lime

Lime		Molding dry		unconfined corrength, psi	mpressive	
Kind	density g pof		7 day	28 day	90 day	
Calcitic	3	110	0	11	11	
hydrated	3 6 9	113	0	11	12	
# #	12 119	-	8	25	31	
••		19	30	42		
#	15	120.5	30	51	ND⇔	
#	25	112	64	7 3	ND	
Dolomitic						
monohydrate	3	110	0	11	14	
16	6	113	0	15	31	
Ħ	9	116.5	21	29	57	
H	12	119	32	<i>5</i> 1	93	
a	15	120.5	5 3	120	ŃĎ	
15	25	120.0	112	215	ND	

^{*} Not determined.

Table 24. Strengths of friable loess stabilized with lime

Lime		Molding dry	Immersed unconfined compressive strength, psi				
Kind	\$	density, per	7 day	28 day	90 day		
Calcitic				· · · · · · · · · · · · · · · · · · ·			
hydrated	3	99•9	72	110	287		
5	6	99.0	72 59 78	105			
tt	9	99.0	78	158	403		
Ħ	12	97,7	64	144	499		
		2191	• .	T-6-4	435		
Dolomitic	3	100.9	117	249	234		
monohydrat	6	100.8	151		584		
#	~ 9	100.6	174	354 400	621		
- a	12	100.5	182	369	588		

do not appear warranted.

Friable loess should not be stabilized with lime and fly ash, unless a very good quality fly ash is cheaply available. Six percent dolomitic monohydrate lime gave strengths of 150, 354 and 584 psi for 7, 28 and 90 days curing respectively. These strengths were actually lowered by the addition of a medium or low quality fly ash.

Gumbotil. In the experiments with gumbotil, lime was added in amounts up to 25 percent (Figure 50). In every curing period a percentage of lime was found above which there was no appreciable increase in strength. This "breaking" percentage tends to be higher for the longer curing periods. (This was also observed in the results with alluvial clay.)

At least 9 percent of either dolomitic or calcitic lime is recommended. With dolomitic lime, 200 and 300 psi may be obtained after 7 and 28 days curing respectively. These figures are rather low and may be increased by the addition of fly ash, or by substituting some lime for fly ash. Lime and fly ash may compete economically and strengthwise with the minimum amount of lime required.

Table 25. Strengths of gumbotil stabilized with lime

Lime		Molding dry	Immersed	unconfined o	
Kind	%	density, pef	7 day	28 day	90 day
Calcitic hydrated ""	3 6 9 12 15 25	93.5 89.5 87.1 87.1 87.0 86.4	100 116 125 132 141 173	145 155 215 228 240 307	97 317 386 478 ND* ND
Dolomitic monohydra	te 3 6 9 12 15 25	93.8 92.5 92.3 92.3 89.8 86.2	0 89 191 190 197 211	0 104 274 298 296 326	0 188 429 495 ND ND

^{*} Not determined.

Alluvial clay. The strengths obtained with alluvial clay stabilized with lime were relatively low (Figure 49). The desirable value of 300 psi after 28 days curing may be obtained with 9 percent dolomitic lime, but for this amount the strength is not improved beyond 28 days. The extension of the curing period from 28 to 90 days shows that amounts of 9 percent or greater of calcitic hydrated lime and 12 percent or greater of dolomitic monohydrate lime are needed for the pozzolanic reaction to continue beyond 28 days.

A recommended amount of lime is 12 percent, but the strengths obtained with this amount may also be obtained with an economically competitive lime and fly ash admixture.

Discussion

These researches change the concept that in lime stabilization a small amount of lime added to soil is sufficient to obtain the maximum benefits of lime. possible that this concept was the result of a testing program limited in time. Observation of 7 and 28 day strengths may lead to that erroneous concept (Figures 48 to 50). But when curing periods were continued up to 90 days, the strength gain with time was found to be influenced by the amount of lime. For instance with friable losss (Figure 48) it might be concluded, based on 7 and 28 day strengths, that 3 percent lime is the best amount to stabilize this soil; higher amounts do not particularly add to strength. But a study of 90 day strengths shows that 6 percent should be the recommended amount of lime to stabilize the soil. Therefore the amount of lime needed to stabilize a soil should be determined on the basis of short as well as long curing periods. If it is desirable to obtain a high long-term strength, the highest economically possible amount of lime should be used.

It was also found (Figures 48 to 50) that calcitic hydrated lime was more effective than dolomitic monohydrate lime in low amounts of lime, of around 3 percent. Dolomitic monohydrate lime was more effective than calcitic hydrated in amounts of lime of 6 percent or higher. Consequently when small amounts of lime are used, the calcitic hydrated type should be favored. For high amounts, dolomitic monohydrate lime should be used.

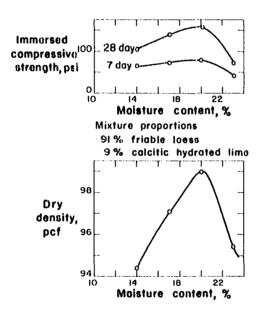
Discussion of Moisture-Density Curves of Clayey Soils Treated
With Lime

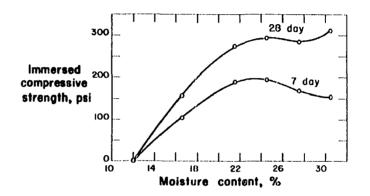
It has been observed that the moisture-density curves for gumbotil and alluvial clay treated with lime and fly ash had a peculiar shape (Figures 5,6,7 and 9). There was not a distinctive maximum density; it being undefined in many instances. Fly ash was found not to be the cause of this.

The shape of the curves of moisture-density relationships of a friable loss-lime mixture follow the concept of
a maximum density at an optimum moisture content (Figure 51).
This soil, friable loss, has a relatively low amount of
clay, 17 percent. But for mixtures of gumbotil and lime or
alluvial clay and lime there is not a defined maximum density
for an optimum moisture content, and the drier the mixtures
the greater the dry density obtained (Figures 52,53).

Both gumbotil and alluvial clay have a very high content about 70 percent, of montmorillonitic clay. It was suspected that high amounts of clay, at least of the montmorillonitic type, were the cause of the poorly defined shape of moisture-density curves.

To find if the soil without lime had the same shape of moisture-density curves, some comparative tests were made. For instance in Figure 54 are plotted moisturedensity curves for alluvial clay with and without lime, compacted with the same compactive effort modified Proctor in this case only. A very wide range of moisture contents was used in these tests. The curve for straight soil shows a continuous increase in density, as the water content increases, up to a maximum density; higher amounts of water will then decrease the density. The curve for the soillime mixture shows a small increase in density with increase in water content for very low amounts of moisture; from then on, the density decreases with the increase in water content, slightly initiating a hump close to the point at which, theoretically, should be the maximum density. The addition of lime to soils of high content of montmorillonitic clay distorted the shape of moisture-density curves.

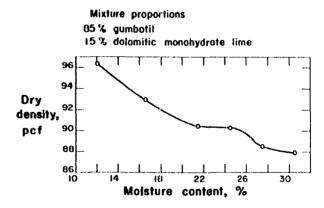
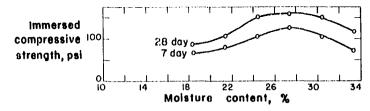
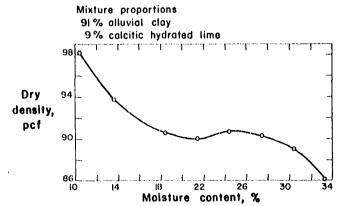
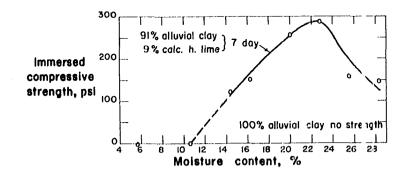

The moisture-density curves for montmorillonitic clay soils stabilized with lime are probably affected by the flocculating effects of lime. The lime alters the character-


Figure 51. Moisture-density and moisture- Figure 52.

strength relationships of a

mixture of 91 percent friable
loess and 9 percent calcitic
hydrated lime, compacted at
standard Proctor compactive
effort.

Moisture-density and
moisture-strength relationships of a mixture
of 85 percent gumbotil
and 15 percent dolomitic
monohydrate lime, compacted at standard
Proctor compactive effort.

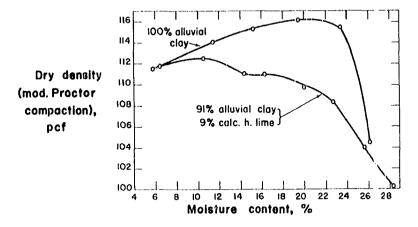

Figure 53. Moisture-density and moisturestrength relationships of a
mixture of 91 percent alluvial
clay and 9 percent calcitic hydrated lime, compacted at standard Proctor compactive effort.

Figure 54. Moisture-density and moisture-strength relationships of a mixture of 91 percent alluvial clay and 9 percent dolomitic monohydrate lime, compacted at modified Proctor compactive effort.

istics of clayer soils conventing them into a material with the workability of friable soils. At low moisture contents the flocculating effects of lime impart to clayer soils a highly open structure. This facilitates the expulsion of air which becomes more important, in these soils with a void ratio of about 0.35 at the maximum density, to the increase of density than the lubricating effects of water. The free expulsion of air from a mass containing about one third void space can easily have a great influence on the final compacted dry density at low moisture contents.

As seen in Figures 52 through 54, the maximum strength does not occur at a point of maximum density. It is also observed in Figure 52 that for high moisture contents there is an initiation of a second point of maximum strength. This is more clearly seen in the 28 day strength curve. This points out the necessity of reviewing the present concept used in soil stabilization of compaction at the optimum moisture content for maximum dry density. As discussed above, regarding the molding or compaction moisture content of soils stabilized with lime and fly ash, the strength gain or hardening of these mixtures comes from the formation of cementitious products rather than from density. A high moisture content maintains a larger supply of water for the hydration process to proceed at a faster rate and/or for longer periods. It is therefore recommended that in the

stabilization of soils with lime or lime and fly ash, the molding or compacting moisture content be chosen on the basis of the maximum strength rather than on the maximum density of the mixture.

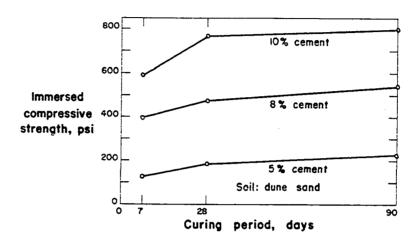
Portland Cement Stabilization

An evaluation of lime-fly ash stabilization is not complete without a comparison of its effectiveness with that of cement stabilization. Strength results for several percentages of cement are presented and discussed here. A final comparison of lime-fly ash and cement stabilization will be given further in this paper after evaluating economically competitive mixes and their durability resistance.

Plastic soils to be stabilized with cement should be pre-treated with lime to flooulate the soil particles and thereby facilitate the mixing process. Alluvial clay and gumbotil are soils of high plasticity needing the lime pre-treatment. Consequently alluvial clay was treated with 3 percent lime and gumbotil with 4 percent in addition to cement. Both lime and sement were added together.

The same water content found optimum for soil-lime specimens was used here. The results are given in Table 27 and are presented in Figures 55 to 58.

Presentation and discussion of results


Portland cement in the proper amounts stabilized any of the four soils tested. Good strengths were obtained with at least 8 percent cement in dune sand, 6 percent in loess, 3 percent lime plus 6 percent cement in alluvial clay and 4 percent lime plus 5 percent cement in gumbotil. These mixes gave 7 day strengths over 300 psi.

Most of the final strength was developed in the first seven days. The rate of increase after seven days was not very pronounced, except with the loess. In the length of time needed to develop strength lies an important difference between cement and lime-fly ash stabilization (Compare Figure 55 with Figure 28; Figure 56 with Figure 29; Figure 57 with Figure 30 and Figure 58 with Figure 31). The early strengths for lime-fly ash were low, but the strength steadily increased with time at a fairly good rate, For long curing periods the strengths with lime-fly ash and cement tended to equalize; being in many instances greater for lime-fly ash than for cement-treated soils.

Both calcitic hydrated and dolomitic monohydrate limes were used with gumbotil to compare their effectiveness in the lime treatment to change the plasticity. The results were erratic and do not show consistently better improvements, based on strength, with one or the other lime (Table 27). Further tests should be conducted to compare the

Figure 55. Strength of dune sand cement mixtures.

Figure 56. Strength of friable loess cement mixtures.

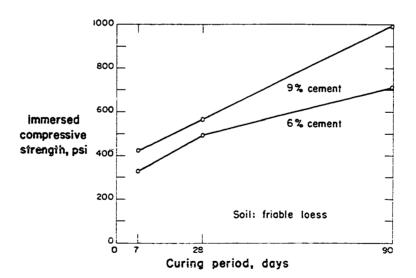
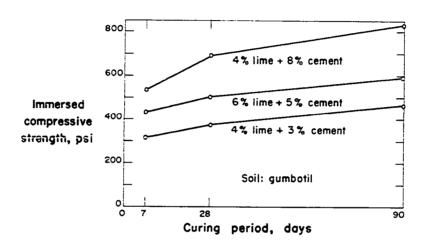



Figure 57. Strength of gumbotil cement mixtures.

Figure 58. Strength of alluvial clay cement mixtures.

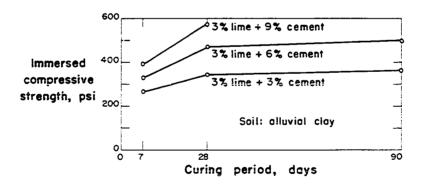


Table 26. Strengths of alluvial clay stabilized with lime

Lime		Density,	Immersed unconfined compressive strength, psi				
Kind	7	pof	7 day	28 day	90 day		
aloitic	1						
hydrated	3	92.4	125	132	124		
~ n	6	91.1	129	182	1.94		
ff (9	90.6	128	166	218		
16	12	89.8	112	158	241		
Oolomitic							
monohydrate	3	93.5	48	448	35		
81	3 6	93.5 92.2	173	274	35 250		
14	9	91.5	173	31.45	336		
84	12	90.8	194	334	336 415		

Table 27. Immersed unconfined compressive strength of mixtures of soil, stabilized with portland cement

So 1.1.	Lime treatment	Cement	Dry Density,	Immersed unconfined compressive strength, psi			
	% and kind	K	pof	7 day	28 day	90 day	
Dune sand	None	<i>5</i> 8	110.8	127	184	228	
li 11	None	8	112.7	398	474	541	
H II	None	10	117.1	591	770	802	
Friable loess	None	6	101.3	330	495	71 5	
H II	None	9	103.5	423	566	1001	
Alluvial clay	3, dol.	3	93.5	266	341	369	
11 11	3, dol.	3 6	94.0	328	469	501	
0 #	3, dol.	9	94.9	391	574	NDa	
Gumbotil	4, calc.	3	94.2	317	376	463	
11	4, calc.	3 5 8	93.4	440	493	687	
ti .	4, oalc.	8	94.4	515	58 6	870	
Gumbot11	4, dol.	5 8	95.0	432	507	590	
1) 1)	4, dol.	8	94.7	534	692	830	

a Not determined.

officetiveness of both limes in treatments for soil-sement stabilization. In the meantime the cheapest one available is recommended.

Durability Evaluation

The effectiveness of lime-fly ash stabilization was compared with that of other methods of soil stabilization. A few mixes were selected with the proper amount of lime and fly ash for each soil, to compare them with mixes in which lime and/or cement was the stabilizer. The comparison included freeze-thaw testing of selected mixes.

Dolomitic monohydrate lime and fly ash No. 3 were the most suitable lime and fly ash for stabilizing any of the four Iowa soils evaluated here. The addition of chemicals is highly recommended with sandy soils; therefore chemical additives were used in three mixes with dune sand. Sodium carbonate and sodium chloride were chosen as additives based on strength improvements, cost of the chemicals, and practicability of their use in field construction. The composition and proportions of the selected mixtures, which vary somewhat with each soil, are given in Tables 38 through 41.

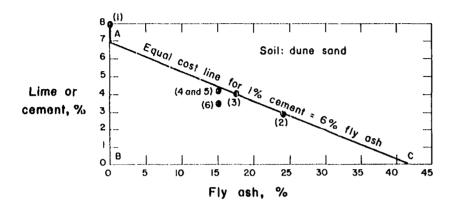
The proportions used in the soil, lime and fly ash mixtures were calculated to compete with the required amount of cement and/or lime needed to stabilize the same soil.

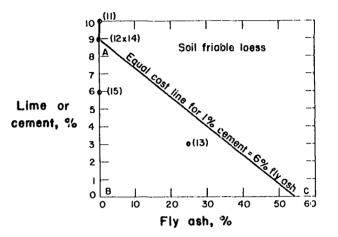
Use was made of the Towa State equal cost line method for soil-lime-pozzolan mix design (71).

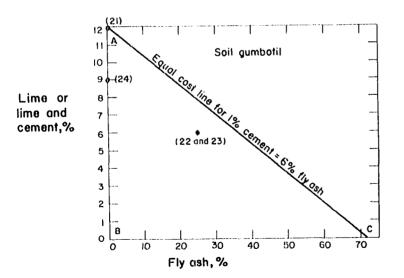
It was assumed that:

- a) Eight percent cement is required to stabilize dune sand.
- b) Ten percent cement or 9 percent dolomitic monchydrate lime is required to stabilize friable loess.
- c) Three percent lime and 9 percent cement are required to stabilize alluvial clay.
- d) Four percent lime and 8 percent cement are required to stabilize gumbotil.
- e) The cost of lime or cement is the same, about \$22 a ton.
- f) The cost of fly ash is one-sixth that of lime or cement.
- g) The cost of handling two materials (lime and fly ash; lime and cement), instead of one if stabilized with cement or with lime only, is equal to the cost of one percent of cement.
- h) The cost of sodium carbonate and handling this extra material is 2.5 times that of an equal amount of cement, and the cost of sodium chloride and extra handling is the same as one percent of cement.

Dune sand


The sand-lime-fly ash equal cost line graph for the selected mixtures is given in Figure 59. All the mixtures within the triangle ABC, have the same cost or are cheaper


than the required 6 percent of cement needed to stabilize dune sand.


Based on 28 day strength requirements, lime and fly ash may be economically used to stabilize sandy soils (Table 28). Either lime and fly ash mixtures or lime and fly ash mixtures with chemical additives withstood the severity of freezing and thawing tests and had enough residual strength to be considered adequately stable. A good quality fly ash (No. 3) was used in these tests; these results may not be reproduced with all kinds of fly ash.

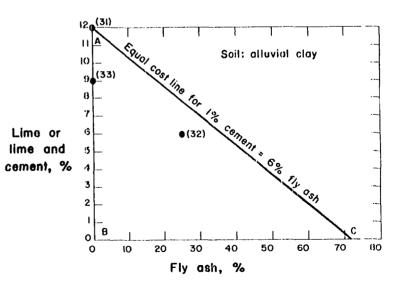

All five selected dune sand, lime, and fly ash mixtures gave 28 day strengths equal or greater than dune sand-cement for the same curing period. It has been estimated that after freezing and thawing, the stabilized soil specimens should yield a minimum strength of 250 psi (16). This value was surpassed by all mixtures (see column pf Table 28). It is desirable that soil stabilized specimens show an index of resistance to the effects of freezing (Rf) of at least 80 percent to satisfactorily withstand Iowa climatic conditions (16). Only mixes Nos. 4 and 6 gave indexes of resistance lower than 60 percent; however, they had Rf values of 78 percent, which should be adequate, since the values of pf and pg are over 400 psi.

Figure 59. Equal-cost-line charts for soil stabilized with selected admixtures of lime-fly ash or lime-fly ash-chemical compared with mixtures of soil-lime-cement or soil-cement.

0

Table 28. Durability evaluation of selected admixtures to stabilize dune sand

Mix No	0	Proportions	As-molded dry density, pof
1		sand, 8% p. cement	112.6
2	73%	sand, 3% dol. lime, 24% fly ash No. 3	124.3
3	76%	sand, 4% dol. lime, 17.5% fly ash No. 3	124.4
4	82%	sand, 3% dol. lime, 15% fly ash No. 3 4 0.5% sodium carbonate	117.2
14A	82%	sand, 3% dol. 11me, 15% fly ash No. 3	123.8
5	82%	sand, 3% calc. lime, 15% fly ash No. 3 + 0.5% sodium carbonate	116.1
6	82%	sand, 3% calc. lime, 15% fly ash No. 3 + 0.5% sodium chloride	124.1
5A⊶6A	82%	sand, 3% calc. lime, 15% fly ash No. 3	123.1

(Continued)

Table 28. (Continued)

					ressive psi	· e	
Mix No.		Proportions	28	daya	P _f b	Po	Rrd,
1.	92%	sand, 8% p. cement		474	507	517	98
2	73%	sand, 3% dol. lime, 24% fly ash No. 3	}	792	821	966	85
3	76%	sand, 4% dol. lime, 17.5% fly ash No.	3	646	634	674	94
4	82%	sand, 3% dol. lime, 15% fly ash No. 3 + 0.5% sodium carbonate	}	554	452	583	78
4A	82%	sand, 3% dol. lime, 15% fly ash No. 3	3	390	ИDe	ND	ND
5	82%	sand, 3% calc. lime, 15% fly ash No. + 0.5% sodium carbonate	3	644	596	570	1.014
6	82%	sand, 3% calc. lime, 15% fly ash No. + 0.5% sodium chloride	3	453	414	454	78
5A-6A	82%	sand, 3% calc. lime, 15% fly ash No.	3	1.20	ИD	ND	ND

After 28 days ouring and 24 hours immersion in distilled water.

b After 28 days ouring, 24 hours immersion in distilled water and ten freeze-thaw cycles.

O After 28 days ouring and 11 days immersion in distilled water.

d Rf = 100 Pf

O Not determined.

ing and thawing cycles and/or during immersion. None of the mixtures showed any visible damage detriment from freezethaw, neither did they show any expansion.

The as-molded dry density of the several mixtures changed by as much as 12 pcf, but there was no relationship between density and strength values.

Friable loess. Only one loess, lime and fly ash mixture was considered to compete economically and on a strength basis with loess and cement or loess and lime mixtures. That loess, lime and fly ash mixture was 72 percent loess, 3 percent dolomitic monohydrate lime and 25 percent fly ash No. 3 (Table 29). It was compared with mixtures of the same soil stabilized with 9 percent dolomitic monohydrate lime or with 10 percent cement. The amount of 9 percent dolomitic lime was chosen based on a previous evaluation using different amounts of lime (Table 24). Ten percent cement was chosen based on the A.S.T.M. requirements to stabilize this kind of soil (3). Twenty-eight day results for mixtures with 6 and 9 percent cement are also included in Table 29.

Strengths of 400 psi were obtained with all selected mixtures after a curing period of 28 days. The mixtures exposed to 10 cycles of freezing and thawing showed a strength either close to 400 psi or well over this value, which is very adequate for a base course. The indexes of

modistance were ever the minimum of 60 percent desired.

Œ,

Friable loess can be stabilized with cement, lime, or lime and fly ash for use as a road base course material. The 10 percent cement mixture gives strengths that are much higher than those obtained with mixtures with lime or with lime and fly ash. It appears that a lower amount of cement might also adequately stabilize friable loess. For instance, mixture No. 15 (Table 29), composed of 6 percent cement and 94 percent loess, gave a strength of 495 psi after 28 days. This strength is comparable to that obtained with the selected mixtures of loess-lime and loess-lime-fly ash. Therefore, it is possible that 6 percent cement would be an adequate amount to stabilize this soil. In this case. cement should preferably be used to stabilize friable loss rather than lime or lime and fly ash, unless the price of lime is much cheaper than that of cement or a high quality fly ash is cheaply available.

Gumbotil. Two fly ashes, No. 2 and No. 3, were used with dolomitic monohydrate lime to stabilize gumbotil and to make an evaluation of the durability of these mixtures. The proportions used, based on previous results, were 69 percent gumbotil, 6 percent lime and 25 percent fly ash (Table 30). The strengths previously obtained with lime and gumbotil were rather low (Table 24) and do not recommend the use of straight lime stabilization for base course con-

Table 29. Durability evaluation of selected admixtures to stabilize friable loss

M1x No.		Proportions	As-mold density	pof	sti	Unconfined compressive strongth, psi			
		-		28	daya pro	Po	R _f d, 9		
1.1	90%	loess, 10% cement	103.	5 645	567	682	83		
12	91%	loess, 9% dol. mon. 1	1me 100.	8 396	387	428	90		
13	72%	loess, 3% dol. mon. l. fly ash No. 3	1me, 2 5 % 99.	1 462	441	521	85		
14	91%	loess, 9% cement	103.	5 566	$\mathtt{ND}^{\mathbf{e}}$	ND	ND		
15	94%	loess, 6% cement	101.	3 495	ND	ND	ND		

After 28 days curing and 24 hours immersion in distilled water.

d.
$$R_{f} = \frac{100P_{f}}{P_{c}}$$

b After 28 days curing, 24 hours immersion in distilled water and ten freeze-thaw cycles.

O After 28 days curing and 11 days immersion in distilled water.

e Not determined.

not evaluated here. The amount of cement to stabilize gumbotil, based on A.S.T.M. requirements is about 12 percent (3). Therefore this was the amount used in the durability studies.

Without using lime it would be impossible to field mix gumbotil with cement, because gumbotil is an extremely plastic clay soil. Hence, four percent of the required amount of cement was replaced by lime to decrease the plasticity of the soil.

Both mixtures in which lime and fly ash was the stabilizing agent gave strengths comparable with that of the mixture of gumbotil stabilized with lime and cement. The stre strengths after 28 days curing were above 600 psi for both immersion periods and for all three mixes selected for the freeze-thaw studies. The strengths after freezing and thawing cycles were about 540 psi for the three mixes. These strengths are very good for this high-clay content soil, and warrant the use of these mixtures as a base course material. The indexes of resistance are adequate for mixes Nos. 21 and 22 (Table 30). Mix No. 23 had a rather low index of resistance of 68 percent. This index value is due to a substantial gain of strength during the 11 day immersion period. Provided that the strength after the Iowa freezethaw test is still 529 psi, gumbotil may be used in a base course when stabilized with the materials and proportions of

Table 30. Durability evaluation of selected admixtures to stabilize gumbotil

Mlx	No.	Proportions		-molded density			l compre th, psi	
Carrier of the size	مينه خوامدان و ۲ اولون بوزونه خوامدان	nagyağ telipinkilikki kirikiya i-pin quanyurluruyuk olunkun ilmişinki diriqualgamayılınıy		pof	28 day ^a	Po	P,b	R _f d, %
21		gumbotil, 4% dol. mon. oement	lime and	95.1	705	634	550	87
22		gumbotil, 6% dol. mon. fly ash No. 2	lime and	90.0	606	642	534	83
23		gumbotil, 6% dol. mon. fly ash No. 3	lime and	94.1	682	780	529	68
24		gumbotil, 4% dol. mon cement	lime and	93•3	534	ND ⁶	ND	ND

After 28 days ouring and 24 hours immersion in distilled water.

b After 28 days curing, 24 hours immersion in distilled water and ten freeze-thaw cycles.

G After 28 days curing and 11 days immersion in distilled water.

e Not determined.

min No. 23; that is 69 percent gumbetil, 6 percent delemitic monohydrate lime and 25 percent fly ash No. 3.

As evident by the strength obtained with mix No. 24, it is possible to obtain good strengths with lesser amounts of lime and cement. However, strengths equivalent of mix No. 24 may be also obtained with lesser amounts of lime and fly ash than those used in mix Nos. 21 and 22. Hence it may be concluded that gumbotil can be stabilized with lime and fly ash, competing economically and strength-wise with cement, or, for this plastic soil, with lime and cement.

It is necessary to point out that with gumbotil, the strengths obtained with the specimens prepared for the durability evaluation studies had greater strengths than specimens made with the same admixtures in previous studies. This lack of reproducibility of strength was only found with gumbotil. It is possible that specimens prepared for the durability studies were benefitted during curing by temperatures slightly higher than in the other studies, causing the strength differences noted.

Alluvial clay. About 12 percent cement is the least amount required for stabilizing alluvial clay according to A.S.T.M. tests (3). The lime-fly ash combinations that might give strengths comparable with those obtained with cement were those made with dolomitic monohydrate lime plus

fly ash No. 3 (Table 51). Mixtures of alluvial clay and lime did not show high strength (Table 26), so they were not evaluated here.

Instead of using the full cement requirement of 12 percent, 3% lime and 9% cement were used. The lime was used primarily to give the soil friable characteristics which would allow better mixing with the cement. Lime also may counteract any adverse effects from the somewhat high organic matter content of the alluvial clay.

Both mixtures submitted to the freezing and thawing tests gave strengths of around 500 psi for any of the three testing treatments tried. The indexes of resistance were also above the minimum desired. It appears that alluvial clay stabilized with the proper lime and fly ash admixture may have strengths and durability comparable to alluvial clay stabilized with cement, and be economically competitive as. (See Figure 59).

Mix No. 33, was composed of 91 percent alluvial clay and 9 percent lime and cement, not evaluated in freezing and thawing but seemingly gave adequate 28 strength. It is also possible that mixtures containing smaller amounts of fly ash than mix No. 32 might give strengths as good as those of mix No. 33.

777

Table 31. Durability evaluation of selected admixtures to stabilize alluvial clay

M1x N	o. Proportions	As-molded dry	Unconfined compressive strength, psi				
	o den transmission de	density, pof	28 day ^a	Pr b	Po	Rfd, %	
31	88% alluvial clay, 3% calo. hyd lime and 9% cement	. 94.9	574	498	527	94	
32	69% alluvial clay, 6% dol. mon. lime and 25% fly ash No. 3	93.6	513	475	563	84	
33	91% alluvial clay, 3% dol. mon. lime and 6% cement	94.0	470	ND®	ND	ND	

After 28 days curing and 24 hours immersion in distilled water.

^d
$$R_f = \frac{100 P_f}{P_c}$$

b After 28 days ouring, 24 hours immersion in distilled water and ten freeze-thaw cycles.

G After 28 days curing and 11 days immersion in distilled water.

e Not determined.

CONCLUSIONS

Based on this investigation the following conclusions are made:

- 1. Maximum strength of soil, lime, and fly ash mixtures is produced by a compaction moisture content that is
 not necessarily the optimum moisture content for maximum
 density. With sandy soils, the compaction moisture for
 maximum strength is to the dry side of the optimum moisture
 for maximum density. In soils having a high clay content,
 at least of the montmorillonite type, it is to the wet side.
 With other soils, such as friable loess, maximum strength
 and maximum density may occur at the same compaction moisture.
- 2. Maximum strength of soil-lime mixtures also may occur at a compaction moisture content different than the optimum moisture content for maximum density.
- 3. The required compaction moisture content to produce maximum strength changes with the curing period of soil, lime, and fly ash mixtures: the longer the curing period the greater the compaction moisture content needed for maximum strength.
- 4. Increasing the compactive effort from standard Proctor to modified Proctor increases the strength of soil, lime, and fly ash mixtures. The strength increase obtained is variable, but usually in the range of 50 to 160 percent.

- 5. There is not an optimum amount or ratio of lime and fly ash for stabilizing all soils. The amount and proportions of lime and fly ash to use depend greatly on the kinds of fly ash and soil, and somewhat on the kind of lime. For granular soils the amount of lime should be between 3 and 6 percent; the amount of fly ash between 10 and 25 percent. For clayey soils the amount of lime should be between 5 and 9 percent; the amount of fly ash between 10 and 25 percent.
- 6. Dolomitic monohydrate lime generally gives better strengths in soil, lime, and fly ash mixtures than calcitic hydrated lime for normal amounts of lime and using ambient curing temperatures.
- 7. At low lime contents, of the order of 3 percent, calcitic hydrated is more effective than dolomitic monohydrate for stabilizing clayey soils with or without fly ash; at higher lime contents, dolomitic monohydrate gives better strengths than calcitic hydrated.
- 8. The fly ashes used were beneficial to soil-lime mixtures for all soils except friable loss. With the friable loss, only a high quality fly ash was beneficial to loss-lime mixtures.
- 9. Heating of the materials to high temperature at the time of mixing lowers the compacted density and cured strength of clayey soil, lime, and fly ash mixtures.

- after wet mixing of soil, lime, and fly ash mixtures; otherwise density and strength may be substantially lowered.

 At the most, with clayey soils, wet mixing and compaction should be done the same day; but with sandy soils compaction could be delayed until the day after wet mixing without appreciable loss of strength.
- ash pozzolanic reaction and the strength of soil, lime, and fly ash mixtures may be greatly increased by moist curing at higher than ambient temperatures. Soil-lime and soil-cement mixtures are also benefited by high temperature moist curing.
- 12. Steam cured specimens of soil stabilized with lime, lime-fly ash, or cement after a few hours attain strengths comparable to concrete.
- 13. At ambient temperatures, dune sand or dune sand-fly ash stabilized with dolomitic monohydrate lime reaches generally higher strengths than when stabilized with calcitic hydrated lime, but at high temperatures (above 140°F) calcitic lime is better than dolomitic.
- 14. The quality of a fly ash for soil stabilization is reflected in the unconfined compressive strength developed in mixes with lime after curing at any temperature. A mixture made with a high quality fly ash will always show.

greater strength than a mixture made with a low quality one, regardeless of the curing temperature at which both mixtures were cured.

- 15. There is no correlation between long-term strength at ambient curing temperatures and short-term strength at elevated curing temperatures for soil, lime, and fly ash mixtures. The strength correlation depends on the kind of fly ash, the kind of lime, and probably also on the type of soil.
- 16. The quality of a fly ash can be improved by removing the coarse fraction and/or by grinding.
- 17, a). The strength attained with soil, lime, and fly ash mixtures may be increased by the addition of small amounts of some chemicals; sodium carbonate, sodium metasilicate and sodium hydroxide appear to be the most promising ones, as indicated by strength improvements and economic considerations. This benefit is greatest in mixtures with sandy soils followed by soils of low plasticity. Clayey soils stabilized with lime and fly ash do not benefit from the addition of sodium hydroxide, sodium carbonate or sodium metasilicate.
- b). Although the increase of strength gained from the use of chemical additives occurs over the ordinary range of temperatures, the additives are especially needed at temperatures close to freezing when they may permit extending

the working season of the soil-lime-fly ash stabilization.

- c). Sodium carbonate is the chemical most highly recommended for use in sandy or silty soils stabilized with lime and fly ash. The addition of 0.5 percent sodium carbonate permits a reduction in the amounts of lime and fly ash needed to attain the same strength that may be obtained by using greater amounts of lime and fly ash.
- 18. The amount of lime needed to stabilize a soil should be determined on the basis of short as well as long curing periods. Small amounts of lime give early strengths equal to or higher than larger amounts of lime, but after long curing periods the larger amounts will produce the highest strengths.
- 19. The moisture-density curves of montmorillonitic clay soils stabilized with lime are affected by the flocculating effects of lime. Sometimes the curves do not show a maximum density.
- 20. Cement is a very effective stabilizer for most soils. The strength gain of soil-cement mixtures is rapid and a large percentage of ultimate strength is developed in a relatively short time. Contrarywise, compacted soil, lime, and fly ash mixtures gain strength slowly and full strength may not be developed for several years. The comparison of soil-cement and soil-lime-fly ash test specimens should be made on the basis of 28 day curing. After this

period, soil-coment should have developed about 90 percent of the ultimate strength, and soil-lime-fly ash only about 50 percent, depending on the soil, lime and fly ash used.

- 21. Selected compositions of dune sand, lime and fly ash; or dune sand, lime, fly ash and chemicals can compete in strength, freeze-thaw resistance and cost with mixtures of the same soil stabilized with cement.
- 22. Friable loss is most effectively stabilized with cement. If lime is cheap and a good quality fly ash is available, lime or lime and fly ash may compete with cement to stabilize friable loss.
- 23. Additions of fly ash are beneficial to gumbotillime mixtures. Selected gumbotil-lime-fly ash mixtures show good resistance to freezing and thawing, and may compete with gumbotil-cement stabilization.
- 24. Additions of fly ash are beneficial to alluvial clay-lime mixtures. Lime-fly ash stabilization of alluvial clay may compete economically and strengthwise with cement stabilization.

MEGUMMENDATIONS FOR FURTHER STUDY

The following suggestions for further research are an outgrowth of this investigation:

- 1. Moisture-density and moisture-strength relationships be compared for mixtures of soil, lime, and fly ash,
 with the effect of molding moisture content on strength
 determined at curing periods up to one year. With clayey
 soils these studies should include specimens made with the
 highest moisture contents possible.
- 2. The same moisture-density and moisture-strength studies be made for mixtures of soil and lime.
- 3. Moisture-density and moisture-strength relationships be compared for mixtures of soil and cement, with the effect of molding moisture content on strength determined at different curing periods up to 90 days or longer.
- 4. A basic investigation be made to determine the products formed in the lime-fly ash reaction.
- 5. A basic investigation be made to determine the effects of lime in clayey soils in both compacted and uncompacted states and at different moisture contents.
- 6. A method be developed for finding the pozzolanic activity of a fly ash by curing lime-fly ash specimens for short curing periods at elevated temperatures.

ø

- 7. A machine be designed able to neat economically layers of road courses built with stabilized soil. A portable nuclear reactor could be the source of cheap energy.
- 8. The effect of fineness of lime on strength of soil, lime, and fly ash mixtures be studied.
- 9. A further evaluation be made of the effect of chemical additives on the strength of soil, lime, and fly ash mixtures.

DIDI TOGDADITY

- 1. Alexander, K. M. Activation of pozzolans by treatment with acid. Australian Journal of Applied Science, 6:327-333. 1955.
- 2. American Association of State Highway Officials. Standard specifications for highway materials and methods of sampling and testing, Part I: Specifications. The Society. Washington, D. C. 1950.
- 3. American Society for Testing Materials. Procedures for testing soils. The Society. Philadelphia, Pa. 1958.
- 4. American Society for Testing Materials. 1956 supplement to book of A. S. T. M. standards, Part 3. The Society. Philadelphia, Pa. 1956.
- 5. Anonymous. Lightweight aggregate from fly ash. Rock Products, 62, No. 4:87, 149. 1957.
- 6. Barnes, H. F. Effects of sodium carbonate on lime stabilized clay soils. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1959.
- 7. Bauer, W. G. The coming role of pozzolans. Pit and Quarry, 52, No. 3:107-110. 1959.
- 8. Benton, E. J. Cement-pozzolan reactions. Highway Research Board Bulletin, 239:56-65. 1960.
- 9. Bituminous Coal Research, Inc. Fly ash for use as a construction material. The Company. Pittsburgh, Pa. 1956.
- 10. Blanks, R. F. and Kennedy, H. L. The technology of cement and concrete, Vol 1. John Wiley and Sons, Inc. New York, N. Y. 1955.
- 11. Bowers, D. J. and Snyder, M. J. Fly ash as a raw material for structural clay products. American Ceramic Society Bulletin, 37, No. 5:220-221. 1959.

- 12. Dradfield, R. and Cowan, E. W. The effect of the hydrogen-ion concentration upon the absorption of calcium by a colloidal clay. Soil Science, 24:365-372. 1927.
- 13. Bright, J. I. Fly ash hits the road (etc.). Power Engineering, 58, No. 10:80-81,122. 1954.
- 14. Chu, T. Y., Davidson, D. T., Goecker, W. L. and Moh, Z. C. Soil stabilization with lime-fly ash mixtures: Preliminary studies with silty and clayey soils. Highway Research Board Bulletin, 108:102-112. 1955.
- 15. Crosby, R. L. Lime-fly ash ratio and admixture content versus strength of stabilized clayey soil. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1957.
- 16. Davidson, D. T. and Bruns, B. W. Comparison of type I and type III portland cements for soil stabilization. Highway Research Board Bulletin, 267:28-45. 1960.
- 17. Davidson, D. T., Katti, R. K. and Handy, R. L. Field trials of soil-lime-fly ash paving at the Detroit Edison St. Clair Power Plant, St. Clair, Michigan. The Detroil Edison Company. Detroit, Michigan. October 15, 1957.
- 18. Davidson, D.T., Mateos, M. and Katti, R. K. Activation of the lime-fly ash reaction by trace chemicals. Highway Research Board Bulletin, 231:67-91. 1959.
- 19. Davidson, D. T., Sheeler, J. B. and Delbridge, N. G. Reactivity of four types of fly ash with lime. Highway Research Board Bulletin, 193:24-31. 1958.
- 20. Davis, R. E. A review of pozzolanic materials and their use in concrete. American Society for Testing Materials Special Technical Publication, 99:1-15. 1950.
- 21. Davis, R. E. What you should know about pozzolans. Engineering News-Record, 146, No. 14:37-40. April 5, 1951.
- 22. Dornbusch, L. W. Use of sodium carbonate in gravelly soil-lime-fly ash stabilization. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1958.

13

- of hydrated calcium silicates at elevated temperatures. National Bureau of Standards Journal of Research, 21:617-638. 1938.
- 24. G. and W. H. Gorson, Inc. Poz-O-Pac Manual (Mimeographed). The Company. Plymouth Meeting, Pennsylvania. July 1955.
- 25. Gaca, W. Activation of fly ash with hydrochloric acid. Cement-wapno-gips, 15, No. 24:302-308. 1959. (Original not available for examination; abstracted in Chemical Abstracts, 54:10267. 1960)
- 26. George, K. P. Development of a freeze-thaw test for evaluating stabilized soils. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1961.
- 27. Gildenberg, Z., Fogelzang, M. and Paremuzova, G. Influence of clay additions on the properties of limesand articles. Stroitelnye Materialy, 4, No. 8:34-35. 1958. (Original not available for examination; abstracted in Chemical Abstracts, 53:676. 1959.)
- 28. Goecker, W. L., Moh, Z. C., Davidson, D. T. and Chu, T. Y. Stabilization of fine and coarse-grained soils with lime-fly ash admixtures. Highway Research Board Bulletin, 129:63-82. 1956.
- 29. Grime, G. and Bessey, G. E. The cementing material of sand-lime bricks. Ceramic Society Transactions, 32, No. 1:14-22. 1933.
- 30. Handy, R. L. Cementation of soil minerals with portland cement or alkalies. Highway Research Board Bulletin, 198:55-64. 1958.
- 31. Handy, R. L. Stabilization of Iowa loess with portland cement. Unpublished Ph. D. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa: 1956.
- 32. Handy, R. L. and Davidson, D. T. Accelerating the setting of lime-fly ash-soil mixtures. U. S. Patent 2,942,993. June 28, 1960.

- Davidson, D. T. Chemical treatments for surface hardening of soil-cement and soil-lime-fly ash. Highway Research Board Bulletin, 241:49-66. 1960.
- 34. Havelin, J. E. and Kahn, F. Hydrated lime fly ash fine aggregate. U. S. Patent 2,563,690. August 21, 1951.
- 35. Havelin, J. E. and Kahn, F. Lime-fly ash compositions for stabilizing finely divided materials such as soils. U. S. Patent 2,698,252. December 28, 1954.
- 36. Havelin, J. E. and Kahn, F. Lime-fly ash-aggregate compositions for stabilizing soils. U. S. Patent 2,815,294. December 3, 1957.
- 37. Hicks, L. D. Design and construction of base courses. Highway Research Board Bulletin 129:1-9. 1956.
- 38. Highway Research Board. Highway research in the United States. Highway Research Board Special Report No. 55. 1960.
- 39. Hilt, G. H. and Davidson, D. T. Lime fixation in clayey soils. Highway Research Board Bulletin, 262: 20-32. 1960.
- 40. Hoover, J. M., Handy, R. L. and Davidson, D. T. Durability of soil-lime-fly ash mixes compacted above standard Proctor density. Highway Research Board Bulletin, 193:1-11. 1958.
- 41. Huffman, R. T. Soil stabilization field trials, Primary highway 117, Jasper county, Iowa. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1961.
- 42. Iller, R. K. The colloid chemistry of silica and silicates. Cornell University Press. Ithaca, N. Y. 1955.
- 43. Kalousek, G. L., Logiudice, J. S. and Dodson, V. H. Studies of the lime-rich crystalline solid phases in the system lime-silica-water. American Ceramic Society Journal, 37:7-14. 1954.

- T. Y. Evaluation of lime for stabilization of loess.
 American Society for Testing Materials Proceedings,
 56:1301-1319. 1956.
- 45. Lea, F. M. and Desch, G. H. The chemistry of cement and concrete. St. Martin's Press, Inc. New York, N. Y. 1956.
- 46. Leonard, R. J. and Davidson, D. T. Pozzolanic reactivity study of fly ash. Highway Research Board Bulletin, 231:1-17. 1959.
- 47. Littlejohn, C. E. A literature review of the utilization of fly ash. Clemson A. and M. College. Engineering Experiment Station Bulletin, No. 6, 1954.
- 48. Lu, L. W., Davidson, D. T., Handy, R. L. and Laguros, J. G. The calcium-magnesium ratio in soil-lime stabilization. Highway Research Board Proceedings, 36:794-805. 1957.
- 49. Lunger, R. R. Use of sodium carbonate with lime-fly ash for stabilization of sand. Unpublished M. S. Thesis Library, Iowa State University of Science and Technology. Ames, Iowa. 1958.
- 50. Mateos, M. Effect of trace Chemicals on strength of Ottawa sand-lime-fly ash mixtures. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1958.
- 51. Meissner, H. S. Pozzolans used in mass concrete. American Society for Testing Materials. Special Technical Publication, 99:16-30. 1950.
- 52. Minnick, L. J. and Meyers, W. F. Properties of limefly ash-soil compositions employed in road construction. Highway Research Board Bulletin, 69:1-28. 1953.
- 53. Minnick, L. J. and Miller, R. H. Lime-fly ash compositions for use in highway construction. Highway Research Board Proceedings, 30:489-502. 1950.
- 54. Minnick, L. J. and Miller, R. H. Lime-fly ash-soil compositions in highways. Highway Research Board Proceedings, 31:511-528. 1952.

- 55. C'Flaherty, C. A. Stabilization of gravelly and stony soils with lime and fly ash. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1958.
- 56. Palmieri, M. Fly ash -- a pozzolanic material of great usefulness. Concrete, 59, No. 6:20-22. 1951.
- 57. Parimbetov, B. and Kuatbaev, K. Influence of some additives in the properties of lime-silicate materials from the Barkhan sand. Trudy Instituta Stroitelnykh Materialov Mineralnogo Proiskhozhdeniya i Stekla, Akademiia Nauk Kazakhskoi S. S. R., 1:16-17. 1958. (Original not available for examination; abstracted in Chemical Abstracts, 53:8575. 1959.)
- 58. Peffer, H. C. and Jones, P. W. Fly ash structural material. U. S. Patents 1,942,769 and 1,942,770. January 9, 1934.
- 59. Proctor, R. R. Fundamental principles of soil compaction. Engineering News-Record, 111:245-248. 1933.
- 60. Rakhmatullin, F. A. and Gordova, Z. P. Hydrothermal processing of lime-clay mixtures. Trudy Instituta Khimii, Akademiya Nauk Latviiskoi S. S. R., 7:57-64. 1956. (Griginal not available for examination; abstracted in Chemical Abstracts, 51:15092. 1957.)
- 61. Raymond, S. Utilization of pulverised fuel ash. Civil Engineering and Public Works Review (London), 53:1013-1016. 1958.
- 62. Russell, H. H. Summary of fly ash disposal problem. Air Pollution Control Association Journal, 7, No. 1: 46-47.
- 63. Segal, R. Effect of calcium-magnesium ratio on lime reactivity with fly ash. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1957.
- 64. Sell, C. E. Lime-fly ash ratio and admixture content versus strength of stabilized sandy and silty soils. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1957.

- 65. Spangler, M. C. Soil Engineering. International Textbook Co. Scranton, Pa. 1960.
- 66. Times, A. G. and Griev, W. E. Use of fly ash in concrete. American Society for Testing Materials Proceedings, 56:1139-1160. 1956.
- 67. Vincent, R. D., Mateos, M. and Davidson, D. T. Variation in pozzolanic behavior of fly ashes. American Society for Testing Materials Proceedings. (To be published ca. 1961.)
- 68. Viskochil, R. K., Handy, R. L. and Davidson, D. T. Effect of density on strength of lime-fly ash stabilized soil. Highway Research Board Bulletin, 183:5-15. 1958.
- 69. Wang, J. W. H. Comparison of various commercial limes for soil stabilization. Unpublished M. S. Thesis. Library, Iowa State University of Science and Technology. Ames, Iowa. 1961.
- 70. Weinheimer, C. M. Present and future status of the fly ash disposal problem. Utilization, 8, No. 6:31-34. 1954.
- 71. Woods, K. B., Editor. Highway engineering handbook. McGraw Hill Book Co. New York, N. Y. 1960.

ACKNOWT.EDCMENTS

The subject matter of this report was obtained as part of the research being done under project 283-S of the Engineering Experiment Station of Iowa State University of Science and Technology. This project, entitled "The Loess and Glacial Till Materials of Iowa; An Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction", is being carried on under contract with the Iowa State Highway Commission and under the sponsorship of the Iowa Highway Research Board and is supported by funds supplied by the commission and the U. S. Bureau of Public Roads.

The author would like to express his sincere appreciation to Dr. D.T. Davidson, Project Director and Professor of Civil Engineering, for his guidance and encouragement.

Thanks are also given to Dr. R.L. Handy, Professor J.H. Bolton and Mr. T. Demirel for their help and cooperation.

Gratitude is expressed to Walter N. Handy, Inc. for supplying the fly ashes and to U. S. Gypsum Company for the commercial limes used.

APPENDIX

	03.1	Lime		Fly		Molding dry density pef
Kind	Amount, %	Kind A	nount, %	Kind	Amount, %	pef'
Dune Band	94	Calc. hyd.,	3	- 0	0	110.0
N) (I	91.	11 (3	9		0	117.0
Dune Sand	, 87 79•5 72	Calc. hyd.,	3 3 3	No. 1,	10 17.5 25	119.7 121.6 119.8
Dune Sand	, 84 76.5 69	Calc. hyd.,	6 6	No. 1,	10 17•5 25	121.2 120.9 120.3
Dune Sand	, 81 73.5 66	Calc. hyd.,	9 9 9	No. 1,	10 17.5 25	122.6 120.8 119.0
Dune Sand	, 87 79•5 72	Calc. hyd.,	3 3 3	No. 2,	10 17•5 25	114.6 112.4 107.1
Dune Sand	, 84 76.5 69	Cale. hyd.,	6 6 6	No. 2,	10 17•5 25	115.7 112.5 107.2
Dune Sand	., 81 73.5 66	Calc. hyd.,	9 9 9	No. 2,	10 17.5 25	116.4 112.1 106.1

Kind	Soll Kind Amount, %		Lime Kind Amount, %				ash mount, %	Molding dry density pof
Dune "	Sand,	87 79•5 72	Calc.	hyd.,	3 3 3	No. 3,	10 17.5 25	120.9 123.9 122.7
Dune "	Sand,	84 76.5 69	Calc.	hyā.,	6 6 6	No. 3,	1.0 17.5 25	122.3 123.2 120.5
Dune #	Band,	81 73·5 66	Calo.	hyd.,	9 9 9	No. 3,	10 17.5 25	121.9 119.2 117.7
Dune #	Sand,	87 79•5 72	Calo.	hyd.,	3 3 3	No. 4,	10 17.5 25	108.7 100.6 92.5
Dune "	Sand,	84 76.5 69	Calc.	hyd.,	6 6 6	No. 4,	10 17.5 25	111.0 101.8 91.8
Dune "	Sand,	81 73.5 66	Calo.	hyd.,	9 9 9	No. 4,	1.0 1.7.5 2.5	112.0 102.7 92.0
Dune "	Sand,	87 79•5 72	Calc.	hyd,	3 3 3	No. 5,	10 17.5 25	115.1 117.7 118.9

Kind	801:1 A	mount, %	Kind	L1me A	mount, %	Kind	Fl;	y ash Amount, %	Molding dry density pof
Dune "	Sand,	84 76•5 69	Calo.	hyd.,	6 6 6	No.	5,	10 17.5 25	118.7 120.6 121.6
Dune «	Sand,	81 73•5 66	Calo.	hyd.,	9 9 9	No.	5,	10 17.5 25	121.2 122.6 122.0
Dune "	Sand,	87 79•5 72	Calc.	hyd.,	3 3 3	No.	6	10 17.5 25	118.4 122.3 122.8
Dune "	Sand,	84 76 • 5 69	Calc.	hyd.,	წ 6 6	No.	6	10 17.5 25	121.5 123.4 122.3
Dune "	Sand,	81 73•5 66	Calo.	hyd.,	9 9 9	No.	6	10 17.5 25	121.9 123.0 121.6
Dune "	Sand,	87 79•5 72	Calo.	hyd.,	3 3 3	No.	7	10 17.5 25	109.8 103.7 95.9
Dune "	Sand,	84 76•5 69	Calo.	hyd.,	6 6 6	No.	7	10 17.5 25	112.4 104.0 95.5

Kind	So13. Amour	nt, %	Kind	Lime Amor	unt, %	Kind	'ly as Amo	h un't, %	Molding dry density pof
Dune S	Band,	81 73•5 66	Calc.	hyd.,	9 9 9	No. 7		10 17.5 25	112.0 102.6 93.8
Dune S	Sand,	87 79•5 72	Calo.	hyđ.,	3 3 3	No. 8		10 17.5 25	116.6 118.8 117.7
Dune S	Band,	84 76•5 69	Calo.	hyd.,	6 6 6	No. 8		10 17.5 25	119.0 120.0 118.0
Dune S	and,	81 73•5 66	Calc.	hyd.,	9 9 9	No., 8	3,	10 17.5 25	120.9 120.1 117.6
Dune 8	Sand,	97 94 91.	Dol. 1	mhy.,	3 6 9			0 0 0	110.0 113.0 116.5
Dune S	Sand,	87 79•5 72	Dol. 1	mhy.,	3 3 3	No. 1		10 17.5 25	120.1 122.6 121.2
Dune S	Sand,	84 76 • 5 69	Dol. 1	mhy.,	6 6 6	No. 1	•	10 17•5 25	121.0 122.0 122.1

Kind	Soli.	ount, %	L1: Kind	me Amount, %		ash mount, %	Molding dry density pof
Dune "	Sand,	81 73•5 66	Dol. mhy	•• 9 9 9	No. 1,	10 17.5 25	122.2 120.2 118.5
Dune "	Sand,	87 79•5 72	Doll. mhy	·• 3 3 3	No. 2,	10 17.5 25	107.7 99.2 99.5
Dune "	Sand,	84 76•5 69	Doll. mhy	• • 6 6 6	No. 2,	10 17.5 25	110.2 105.0 95.8
Dune "	Sand,	81 73•5 66	Doll mhy	•• 9 9 9	No. 2,	10 17.5 25	111.4 104.0 97.8
Dune "	Sand,	87 79•5 72	Doll mhy	·, 3 3	No. 4,	10 17.5 25	107.8 100.6 92.7
Dune "	Sand,	84 76.5 69	Doll. mhy	·, 6 6 6	No. 4,	10 17.5 25	116.8 102.6 93.9
Dune "	Sand,	81 73•5 66	Doll. mhy	••• 9 9 9	No. 4,	10 17.5 25	113.5 101.3 90.5

Kind	Soll Amo	ount, %	Lime Kind Amo	ount, %	Fly ash Kind Amount, %		Molding dry density pof
Dune "	Sand,	87 79 • 5 72	Dol. mhy.,	3 3 3	No. 5,	10 17.5 25	115.6 115.7 116.9
Dune "	Sand,	84 76 • 5 69	Dol. mhy.,	6 6 6	No. 5,	10 17.5 25	119.1 117.3 118.5
Dune "	Sand,	81 73•5 66	Dol. mhy.,	9 9	No. 5,	10 17.5 25	121.7 119.2 121.0
Dune "	Sand,	87 79•5 72	Dol. mhy.,	3 3 3	No. 6,	1.0 1.7 • 5 25	119.2 124.2 124.0
Dune "	Sand,	84 76•5 69	Dol. mhy.,	6 6 6	No. 6,	10 17•5 25	121.5 123.9 123.8
Dune "	Sand,	81 73•5 66	Dol. mhy.,	9 9 9	No. 6,	1.0 17.5 25	122.7 124.3 121.6
Dune "	Sand,	87 79 <i>•5</i> 72	Dol. mhy.,	3 3 3	No. 7	1.0 17•.5 25	110.3 104.0 96.9

Kind S	Soll. Amount, %	Lin Kind	ne Amount, %	Kind Fly	ash Amount, %	Molding dry density pof
Dune San	nd, 84 76.5 69	Dol. mhy	6 6 6	No. 7,	10 17.5 25	11.0.5 104.9 96.1
Dune San	nd, 81 73.5 66	Dol. mhy	9 9 9	No. 7,	10 17.5 25	113.8 105.0 95.4
Dune San	87 79.5 72	Dol. mhy	3 3 3	No. 8,	10 17.5 25	11.6.4 11.8.7 11.7.5
Dune San	nd, 84 76.5 69	Dol. mhy	6 6	No. 8,	10 17.5 25	119.2 120.4 119.8
Dune Sar	nd, 81 73.5 66	Dol. mhy	9 9 9	No. 8,	10 17.5 25	122.5 120.1 120.0
Dune, Sa	nd 87 79•5 72	Dol. mhy (U.S. Gyp	osum) 3 3	No. 3,	10 17.5 25	121.4 125.5 125.3
Dune Sar	nd, 84 76.5 69	Dol. mhy (U.S. Gyr		No. 3,	10 17.5 25	123.1 125.3 122.7

Kind	Soil and Amount, %		Kind	·	Lime Amount,				Molding dry density pof
Dune "	Sand , "	81 73•5 66	Dol.	mhy.	(U.S.Gypsum)	999	No. 3,	10 17.5 25	124.1 120.4 118.9
Dune "	Sand,	87 79•5 72	Dol.	mhy.	(U.S.Gypsum)	333	No. 3,	10 17.5 25	120.1 123.4 122.5
Dune #	Sand,	84 76.5 69	Dol.	mhy.	(U.S.Gypsum)	6 6 6	No. 3,	10 17.5 25	120.6 123.3 120.4
Dune "	Sand,	81 73.5 66	Dol.	mhy.	(U.S.Gypsum)	9 9 9	No. 3,	10 17.5 25	122.6 122.5 118.0
Dune "	Sand,	87 79•5 72	Dol.	mhy.	(Western)	ე ე	No. 3,	10 17.5 25	120.5 123.2 121.7
Dune "	Sand,	84 76.5 69	Dol.	ndry.	(Western)	6 6	No _i 3,	10 17.5 25	122.2 122.3 119.6
Dune "	Sand,	81 73.5 66	Dol.	mhy.	(Western)	9 9 9	No. 3,	10 17.5 25	122.8 120.4 117.6

Soil Kind Amount, %			Lime Kind Amount, %			Kind F	ly ash Amount, %	Molding dry density por
Friable	بيرو لمساوية فإمارات الإقاميات التاليك	9 7 94	Calc.	hyd.,	3		0	99.8 99.0
11	11	91	10	11	9	cinė.	0	99.0
Friable	Loess,	87 79•5 72	Calc.	hyd.,	3 3 3	No. 1,	10 17.5 25	97.6 9 8.4 97.8
Friable	Loess,	84 76.5 69	Galo.	hyd.,	6 6 6	No. 1,	10 17•5 25	98.3 97.1 96.8
Friable	Loess,	81 73•5 66	Calc.	hyd.,	9 9 9	No. 1,	10 17.5 25	96.8 95.9 95.3
Friable	Loess,	87 79•5 72	Cale.	hyd.,	3 3 3	No. 2,	10 17.5 25	95.0 91.4 88.2
Friable	Loese,	84 76•5 69	Calo.	hyd.,	6 6 6	No. 2,	10 17.5 25	94.3 89.8 8 7. 6
Friable	Loess,	81 73·5 66	Calo.	hyd.,	9 9	No. 2,	10 17.5 25	93.9 90.2 87.5

6011			Lime	e-General group of the section of	Fly a	ah	Molding dry density	
Kind	Amount, %		Kind Amount, %		Kind Are	ount, %	pod'	
Friable "	Logas,	87 79 - 5 72	Calc. hyd.,	, 3 3 3	No. 3, 1.0 17.5 25		99 .1 99 .9 96 . 9	
Friable "	Loess,	84 76•5 69	Calc. hyd,	, 6 6 6	No. 3,	10 17.5 25	97.6 97.8 96.2	
Friable	Loess,	81 73•5 66	Calc. hyd.,	9 9 9	No. 3,	10 17.5 25	97·3 95·7 95·8	
Friable	Loess,	97 94 88	Dol. mhy.,	3 6 9	00 h - 10 h 10 h	0 0 0	100.9 100.8 100.6	
Friable "	Loess,	87 79•5 72	Dol. mhy.,	3 3 3	No. 1,	10 17.5 25	99.8 99.1 98.7	
Fr1able	Loess,	84 76.5 69	Dol. mhy.,	6 6 6	No. 1,	10 17.5 25	98.9 99.0 97.6	
Friable "	Loess,	81 73•5 66	Dol. mhy.,	9 9 9	No. 1,	10 17.5 25	99.6 98.6 96.5	

Kind	Soll Arao	unt, %	Lime Kind Amount, %			Kii		y ash Amount, %	Molding dry density pof
Friable	Loess,	87 79•5 72	Dol.	mhy.,	3 3 3	No.	2,	10 17.5 25	96.0 92.0 88.2
Friable	Loess,	84 76 . 5 69	Dol.	mhy.,	6 6 6	No.	2,	10 17.5 25	95.1 92.2 88.9
Friable	Loess,	81 73 • 5 66	Dol.	mhy.,	9 9 9	No.	2,	10 17.5 25	95.7 92.4 89.3
Friable	Loess,	87 79•5 72	Dol.	mhy.,	3 3 3	No.	3,	10 17.5 25	100.3 99.4 99.5
Friable	Loess,	84 76•5 69	Dol.	mhy.,	6 6 6	No.	3,	10 17.5 25	1.00 • 7 98 • 5 97 • 9
Friable	Loess,	81 73•5 66	Dol.	mhy.,	9 9 9	No.	3,	10 17.5 25	99•3 98•3 97•4

Soll Kind Amount, %		Line Kind Amount, %			Fly Kind Am	ash nount, %	Molding dry density pof
Gumbotil,	۵ <i>7</i>	Cela.	hyd.,	3		0	93.5
W W	97 94	W ZOI	H H	3 6		Ŏ	89.5
11	91 .	Ħ	I	9	_	Ŏ	87.1
H	88	11	H	12	-	Ō	87.1
Gumbot11,	87	Calo.	hyd.,	3	No. 1,	10	93.7
H	79.5	14	17	3 3	11	17.5	94.1
Ц	72	Ħ	H	3	ti ,	25	94.6
Gumbot11,	84	Calc.	hyd.,	6	No. 1,	1.0	92.2
и	76.5	11	n	6	41	17.5	92.3
11	69	Ħ	H	6	11	25	92.0
Gumbotil,	81	Calc.	hyd.,	9	No. 1,	1.0	90.2
ti	73.5	Ħ	n	9 9	17	17.5	91.7
H	66	fi	14	9	n	25	91.9
Gumbotil,	78	Calo.	hyd.,	12	No. 1,	10	90.7
**	70.5	H	11	12	11	17.5	90.5
H	63	H	11	12	Ħ	25	92.0
Gumbotil,	87		hyd.,	3	No. 2,	10	92.5
15	79•5	n	M .	3 3 3	(1	17.5	91.1
11	72	11	i 1	3	4	25	89.9
Gumbotil,	84	Calo.	hyd.,	6	No. 2,	10	91.3
H	76.5	#	11	6	H	17.5	89.7
н	69	u	11	6	N	25	88.7

Soil Kind Am	ount, %	Ki.nd	Lime Amo	unt, %	F) Kind	y Agh Amount, %	Molding dry density pof
Gumbotil,	81 73.5 66	Calo.	hyd.,	9 9 9	No. 2,	10 17.5 25	89 • 4 89 • 6 88 • 7
Gumbot11,	78 70.5 63	Calc.	hyd.,	12 12 12	No. 2,	10 17.5 25	89 • 8 89 • 6 88 • 9
Gumbotil,	87 79•5 72	Calo.	hyd.,	3 3 3	No. 3,	10 17.5 25	95•4 95•0 95•7
Gumbotil,	84 76.5 69	Calo.	hyd.,	6 6 6	No. 3,	10 17.5 25	93.5 93.8 93.2
Gumbotil,	81. 73. 5 66	Calc.	hyd.,	9 9 9	No. 3,	10 17.5 25	93.0 95.1 94.9
Gumbotil,	78 70.5 63	Calc.	hyd.,	12 12 12	No. 3,	10 17.5 25	92.5 91.8 91.7

Soil			Lime		Fly ash	Molding dry density
	ount, %	Kind	Amount, %	Kind	Amount, %	pef
Gumbotil,	97 94	Dol. mr		-	0	93.8 92.5
18 18	91 88	4 64 4 44	9	-	0	92.3 92.3
Gumbot11,	87 79 _" 5 72	Dol, mi	3	No. 1,	10 17.5 25	96.2 97.1 97.9
Gumbotil,	84 76 _• 5 69	Dol. ml	·	No. 1,	10 17.5 25	94.4 93.6 95.0
Gumbotil,	81 73.5 66	Dol. m	9	No. 1,	10 17.5 25	92.0 92.8 95.1
Gumbotil,	78 70.5 63	Dol. m		No.,1,	10 17.5 25	92.0 92.2 93.0
Gumbotil,	87 79 • 5 72		2y., 3 3	No. 2,	10 17.5 25	93.2 91.4 91.5
Gumbotil,	84 76 . 5 69	Dol. m	ny., 6	No. 2,	10 1 7. 5 25	91.9 90.1 90.2

Kind A	mount, %	Kind	Lime Amount, %		y ash Amount, %	Molding dry density pof
Gumbotil,	81 73•5 66	Dol. ml	9	No. 2,	10 17.5 25	91.3 90.8 89.2
Gumbot11,	78 70•5 63	Dol. mi	12 12 12	No. 2,	10 17.5 25	90.9 89.4 88.6
Gumbot11,	87 79•5 72	Dol. mr	3 3 3	No. 3,	10 17.5 25	94.2 94.2 95.3
Gumbot11,	84 76•5 69	Dol. mr	Ö	No. 3,	10 17.5 25	93.2 94.1 94.1
Gumbot11,	81 73• 5 66	Dol. mk	9 9	No. 3,	10 17.5 25	94.2 92.9 92.9
Gumbot11,	78 7 0 • <i>5</i> 63	Dol. mk	1.2	No. 3,	10 17.5 25	91.5 92.6 92.6

Kind	Soll Amour	nt, %	Kind	Lime Amou	int, %	Kind F	'ly ash Amount, %	Molding dry density pof
Alluvial	clay,	97 94 91	Calo.	hyd.,	3 6 9	944 444 444	0 0 0	92.4 91.1 90.6
Alluvial	olay,	87 79•5 72	Calo.	hyd.,	3 3 3	No. 1,	10 17.5 25	92.0 93.9 94. 7
Alluvial	olay,	84 76•5 69	Calo.	hyd.,	6 6 6	No. 1,	10 17.5 25	92.9 93.2 94.4
Alluvial	olay,	81 73•5 66	Calc.	hyd.,	9 9 9	No. 1,	10 17.5 25	91.8 93.3 93.3
Alluvial	olay,	87 79•5 72	Calc.	hyd.,	3 3 3	No. 2,	10 17.5 25	90.7 89.8 89.1
Alluvial	clay,	84 76•5 69	Calc.	hyd.,	6 6 6	No. 2,	10 17.5 25	90.1 90.4 88.7
Alluvial	clay,	81 73•5 66	Galo.	hyd.,	9 9 9	No. 2,	10 17.5 25	90.5 89.8 86.8

8011		Lim	Fly	ash	Molding dry density		
Kind	Araoux	at, %	Kind	Amount, %	Kind A	nount,	% pcf
Alluvial	olay,	87 79•5 72	Calc. hyd	·, 3 3 3	No. 3,	10 17.5 25	94.2 94.4 95.3
Alluvial	olay,	84 76. 5 69	Calo. hyd	·, 6 6 6	No. 3,	10 17.5 25	93.7 93.8 93.9
Alluvial	olay,	81 73•5 66	Calc. hyd	·, 9	No. 3,	10 17.5 25	92.0 93.2 92.5
Alluvial	olay,	97 94 91	Dol. mhy.	, 3 6 9	endo érap auto	0 0 0	93.5 92.2 91.5
Alluvial	clay,	87 79•5 72	Dol. mhy.	, 3 3 3	No. 1,	10 17.5 25	95.2 95.4 95.7
Alluvial	olay,	84 76. 5 69	Dol. mhy.	, 6 6 6	No. 1,	10 17.5 25	93.2 93.8 94.1
Alluvial	clay,	81 73•5 66	Dol. mhy.	, 9 9 9	No. 1,	10 17.5 25	92.5 92.5 93.7

Kind Amount, %			Lime Kind Amount, %			Fly ash Kind Amount, %			Molding dry density pcf
Alluvial	clay,	87 79•5 72	Dol.	mhy.,	3 3 3	No.	2,	10 17.5 25	95.0 89.8 88.9
Alluvial	clay,	84 76.5 69	Dol.	mhy.,	6 6 6	No.	2,	1.0 17.5 25	91.2 89.8 8 8.1
Alluvial	clay,	81 73•5 66	Dol.	mhy.,	9 9 9	No.	2,	1.0 17.5 25	90.0 89.2 87.9
Alluvial	olay,	87 79•5 72	Dol.	mhy.,	3 3	No.	3,	1.0 1.7.5 25	93•5 94•0 94•7
Alluvial	olay,	84 76.5 69	Dol.	mhy.,	6 6 6	No.	3,	10 17•5 25	92.7 93.5 94.0
Alluvial	clay,	81 73•5 66	Dol.	mhy.,	9 9 9	No.	3,	10 17.5 25	91.8 93.1 93.5